
Exploring Formalisation

A Primer in Human-Readable Mathematics in Lean 3

with Examples from Simplicial Topology

Clara Löh

Book project
Extended version of: ProofLab: Seminar on Simplicial Topology, WS 2021/22

Version of June 20, 2022
clara.loeh@mathematik.uni-regensburg.de
Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg

Contents

0 Introduction 1

1 The Lean Proof Assistant 5
1.1 Proof Assistants 6
1.2 Foundations 7
1.3 Types 8
1.4 Proofs 10
1.E Exercises 16

2 Basic Examples 19
2.1 Injectivity and Surjectivity of Maps 20

2.1.1 Pen-and-Paper 20

2.1.2 Lean 22

2.2 Induction 29
2.2.1 Pen-and-Paper 30

2.2.2 Lean 30

2.2.3 Lean with Sums 32

2.3 Commutators 35
2.3.1 Pen-and-Paper 35

2.3.2 Lean 36

2.4 The Real Zero 38
2.4.1 Pen-and-Paper 38

2.4.2 Lean 39

2.4.3 Lean with Limits 42

2.E Exercises 44

iv Contents

3 Design Choices 47
3.1 Recurring Design Options 48

3.1.1 Types and Sets 48
3.1.2 Structures and Properties 48
3.1.3 Restrictive Types and Cutting Corners 49
3.1.4 Constructing Examples and Evaluation 49

3.2 Simplicial Complexes 50
3.2.1 Pen-and-Paper 50
3.2.2 Lean 52

3.3 Simplicial Maps 56
3.3.1 Pen-and-Paper 56
3.3.2 Lean 58

3.4 Finite Simplicial Complexes 65
3.4.1 Pen-and-Paper 65
3.4.2 Lean 65

3.5 Generating Simplicial Complexes 70
3.5.1 Pen-and-Paper 70
3.5.2 Lean 73

3.6 Combining Simplicial Complexes 76
3.6.1 Pen-and-Paper 77
3.6.2 Lean 78

3.7 The Euler Characteristic 81
3.7.1 Pen-and-Paper 81
3.7.2 Lean 83

3.8 Towards a Library 87
3.8.1 Interaction with Other Libraries 87
3.8.2 Completeness 87
3.8.3 Substructures and Quotients 88
3.8.4 Generality 89

3.E Exercises 90

4 Abstraction and Prototyping 95
4.1 Direct Formalisation: Functorial Semi-Norms 96

4.1.1 Pen-and-Paper 96
4.1.2 Lean 98

4.2 Indirect Formalisation: Amenable Multiplicity 110
4.2.1 Pen-and-Paper 110
4.2.2 Abstraction 113
4.2.3 Lean 118

4.E Exercises 134

Bibliography 135

Index 141

0

Introduction

Proof assistants allow us to formalise mathematical definitions, examples,
theorems, and proofs, and to verify these proofs. The key feature of such a
formalisation is the associated machine-checkable guarantee for correctness
of proofs. The formalisation of mathematics in a proof assistant also has the
following benefits:

• Implementing mathematics requires a very thorough understanding of
the subject and all corner cases. Therefore, a successful formalisation
leads to a better knowledge of the details.

• A formalisation in a proof assistant can lead to executable code and thus
provides the opportunity to run experiments on concrete examples.

• Proof assistants encourage abstraction. It is often easier to formalise
concepts declaratively through universal properties instead of through
concrete, potentially cumbersome, constructions. This can lead to a
clearer view on core issues and ideas.

• Interacting with a proof assistant is fun. And addictive.

All of these benefits are not only valuable for research, but also in a teach-
ing setting: A better understanding of details can increase the awareness for
potential pitfalls, short-cuts that might not be obvious to novices in the field,
and other struggles of students. If students learn basic proof techniques via a
proof assistant, they can obtain immediate feedback [52] and can experiment
with proofs and examples. Moreover, students can see in more practical terms
how abstractions simplify mathematical life.

These notes are an extended version of the material for the seminar
ProofLab: Simplicial Topology at Universität Regensburg in WS 2021/22. The

2 0 Introduction

goal of this seminar was to learn the basics of formalising mathematics in a
proof assistant. In addition to basic examples from first-year mathematics,
as sample theory we chose simplicial topology, which is a higher-dimensional
version of graph theory. For the implementation we used the Lean 3 proof
assistant and the mathlib library, which covers a significant part of under-
graduate mathematics.

The focus of this seminar was to find straightforward formalisations that
lead to human-readable machine-verifiable proofs. While some of the chal-
lenges are specific to simplicial complexes and Lean, most of them are generic
and will occur also with other fields and other proof assistants.

These notes are not a comprehensive treatment of the full programming
language Lean and the underlying dependent type theory. Instead, we study
the transition between pen-and-paper mathematics and the machine counter-
part as well as the design options in this process. This is illustrated with var-
ious examples, proceeding in three stages: Examples from first year courses,
examples from simplicial topology, and recent sample results from algebraic
and geometric topology.

Overview of these notes

• Chapter 1 We start with a quick introduction to proof assistants and to
Lean in particular. This requires a basic understanding of foundations of
mathematics, i.e., how objects, statements, and proofs can be described
in a formal language. In particular, this includes the ability to assemble
and disassemble logical statements.

• Chapter 2 We then consider a first selection of simple examples: In-
jectivity and surjectivity of maps, induction and sums over finite sets,
commutators in group theory, and a fundamental property of real num-
bers. We always follow the same structure: We first develop a pen-and-
paper version and then formalise it in Lean. The examples are chosen
in such a way that basic proof patterns occur. The later examples also
illustrate the interaction with the mathlib library.

• Chapter 3 As a larger example theory, we consider basic concepts and
examples from simplicial topology. We formalise simplicial complexes,
simplicial maps, and the Euler characteristic. During this formalisa-
tion, we discuss typical design questions and experiment with concrete
examples.

• Chapter 4 Finally, we consider situations from recent research in al-
gebraic and geometric topology. These serve as examples of how proof
assistants encourage abstraction and thus can lead to interesting per-
spectives.

Prerequisites I tried to keep things as simple as possible. On the mathemati-
cal side, basic experience with proofs and logical formulae as well as with basic

3

mathematical objects (e.g., sets, maps, groups, reals) is required. Chapter 4
uses basic terminology on categories and functors; Section 4.2 is probably
a bit mysterious without background knowledge in basic algebraic topology
(fundamental groups, universal coverings, cohomology, CW-complexes), but
the formalisation strategy will be understandable without knowing the se-
mantics of these notions.

On the programming side, acquaintance with basic programming concepts
is helpful (e.g., declarations, types, basic control structures, recursion). Prior
exposure to the functional programming paradigm is a bonus.

Exercises Each chapter ends with a selection of exercises around the formali-
sation of mathematical terminology, theorems, and proofs. Skeleton files and
solutions to selected exercises of Chapter 2 and Chapter 3 are provided in
the git repository:

Source code All source code discussed in theses notes is available in a git
repository:

https://gitlab.com/polywuisch/mapa notes update!

Further reading These notes are merely a primer in the formalisation of
mathematics. To get a deeper understanding of proof assistants and formal-
isation it is highly recommended to dive into the literature, tutorials, and
larger formalisation projects.

• J. Avigad, L. de Moura, S. Kong. Theorem Proving in Lean, Re-
lease 3.23.0, https://leanprover.github.io/theorem proving in lean/, 2021.

• J. Avigad, K. Buzzard, R.Y. Lewis, P. Massot. Mathematics in Lean.
https://leanprover-community.github.io/mathematics in lean/

• A. Baanen, A. Bentkamp, J. Blanchette, J. Hölzl, J. Limperg. The
Hitchhiker’s Guide to Logical Verification, 2021 Standard Edition, 2021.
https://github.com/blanchette/logical verification 2021/raw/main/hitchhikers guide.pdf

• Y. Bertot, P. Castéran. Interactive Theorem Proving and Program De-
velopment. Coq’Art: The Calculus of Inductive Constructions, Texts in
Theoretical Computer Science, An EATCS Series, Springer, 2004.

• K. Buzzard, J. Commelin, P. Massot. Lean perfectoid spaces.
https://leanprover-community.github.io/lean-perfectoid-spaces/

• K. Buzzard, M. Pedramfar. The natural number game.
https://www.ma.imperial.ac.uk/∼buzzard/xena/natural number game/

• D. P. Friedman, D. T. Christiansen. The Little Typer, MIT Press, 2018.

• G. Gonthier. Formal proof–the four-color theorem, Notices Amer. Math.
Soc., 55(11), 1382–1393, 2008.
Implementation in Coq: https://github.com/math-comp/fourcolor

https://gitlab.com/polywuisch/mapa_notes
https://leanprover.github.io/theorem_proving_in_lean/
https://leanprover-community.github.io/mathematics_in_lean/
https://github.com/blanchette/logical_verification_2021/raw/main/hitchhikers_guide.pdf
https://leanprover-community.github.io/lean-perfectoid-spaces/
https://www.ma.imperial.ac.uk/~buzzard/xena/natural_number_game/
https://github.com/math-comp/fourcolor

4 0 Introduction

• T. Hales. Formal Abstracts.
https://formalabstracts.github.io/

• L. Lamport. How to write a 21st century proof, J. Fixed Point Theory
Appl., 11(1), 43–63, 2012.

• Lean community. Learning Lean.
https://leanprover-community.github.io/learn.html

• Lean community. Get started with Lean.
https://leanprover-community.github.io/get started.html

• Lean community. mathlib.
https://leanprover-community.github.io/mathlib-overview.html

• Lean community. Using leanproject.
https://leanprover-community.github.io/leanproject.html

• Lean community. Papers about Lean.
https://leanprover-community.github.io/papers.html

• Lean for the curious mathematician, 2020.
https://leanprover-community.github.io/lftcm2020/

• P. Massot. The sphere eversion project.
https://leanprover-community.github.io/sphere-eversion/blueprint/

• The Xena project.
https://xenaproject.wordpress.com/

Errata Comments and corrections for these notes can be submitted by email
to clara.loeh@mathematik.uni-r.de; errata will be collected at

https://loeh.app.uni-regensburg.de/mapa/ update!

A glimpse into the crystal ball These notes are based on Lean 3. The latest
stable release of Lean is still within Lean 3, but the community is preparing the
transition to the successor Lean 4 [39, 7, 54], including porting mathlib [38].

Lean 4 is not backwards compatible with Lean 3. However, most of the
basic principles addressed in these notes will also be applicable to formalising
mathematics in Lean 4 or even other proof assistants such as Coq or Isabelle.
In my experience, the initial switch from pen-and-paper mathematics to a
proof assistant is more challenging than switching between different proof
assistants.

Acknowledgements update!

Happy hacking!

Regensburg, July 2022 Clara Löh

https://formalabstracts.github.io/
https://leanprover-community.github.io/learn.html
https://leanprover-community.github.io/get_started.html
https://leanprover-community.github.io/mathlib-overview.html
https://leanprover-community.github.io/leanproject.html
https://leanprover-community.github.io/papers.html
https://leanprover-community.github.io/lftcm2020/
https://leanprover-community.github.io/sphere-eversion/blueprint/
https://xenaproject.wordpress.com/
https://loeh.app.uni-regensburg.de/mapa/

1

The Lean Proof Assistant

Proof assistants allow us to formalise mathematical statements and to verify
formalised mathematical proofs.

The Lean proof assistant uses type theory as its foundation. We quickly
explain how one can formalise statements and proofs in this setup.

This is a very minimalistic introduction to Lean “for the working mathe-
matician”. In particular, we will not explain the underlying dependent type
theory and we will not give a systematic introduction to all concepts and
programming paradigms available in Lean. More information on Lean can be
found in the standard Lean introductions and documentation [6, 8, 33]. For
dependent types, there is a step-by-step introduction available [23].

We will illustrate and practice basic proof techniques in Lean in Chapter 2.

Overview of this chapter.

1.1 Proof Assistants 6
1.2 Foundations 7
1.3 Types 8
1.4 Proofs 10
1.E Exercises 16

6 1 The Lean Proof Assistant

1.1 Proof Assistants

Proofs are an essential part of mathematics and the formal, objective concept
of proof distinguishes mathematics from most other sciences.

• What is important about proofs? Correctness!

• What is interesting about proofs? The underlying ideas.

Unfortunately, many conventional pen-and-paper proofs contain small (or
substantial) inaccuracies or gaps. Most of these problems can be fixed; how-
ever, it would be beneficial for readers if there was an a priori guarantee for
correctness.

• What is a proof assistant?

A proof assistant is a programming language together with a corre-
sponding interpreter/compiler that allows us to formalise mathematical
objects and facts; this includes definitions, theorems, proofs, and exam-
ples. The main task of a proof assistant is not to find proofs, but to
check proofs for correctness. Proof assistants can thus provide certifi-
cates for correctness, based on the assumption that the proof assistant
in itself is correct.

• Why do we need proof assistants?

Proof assistants help to detect and avoid mistakes. Moreover, indirectly,
they also lead to a better overall understanding of mathematical con-
nections and in the long run will lead to more systematic and structured
ways to generalise results to new contexts. In addition to applications
in theoretical mathematics, proof assistants are used in the analysis of
complex processes, systems, and algorithms in computer science and in
industrial applications [28, 2, 40].

• Why aren’t proof assistants used by default by all mathematicians?

As of today, the formalisation of mathematical theories in proof as-
sistants is still more cumbersome than on paper (because one has to
be much more precise and careful . . .). As soon as a critical mass of
mathematical basics is formalised, this will change. There are several
ongoing projects in this direction [27, 64, 30, 18, 37, 65, 51, 12, 40] and
so there is hope that in the not too distant future proof assistants are
more widely used, both in research and in teaching.

One of the big challenges is to use proof assistants in such a way that
the formalisation is not only easy to check by the interpreter/compiler,
but also comprehensible for human readers: The beauty of mathematics
does not lie in complicated technical details, but in the underlying ideas.

1.2 Foundations 7

Another difficulty is more subtle: Formalisation in a proof assistant re-
quires a solid understanding of formalisation and foundations. In par-
ticular, one has to understand to which extent the logical foundations of
the proof assistant coincide with the intended mathematical meaning.
In this course, we will mostly ignore this delicate point.

• Which proof assistants are in use?

There are many proof assistants; currently, the most popular general
purpose proof assistants are Coq [10], Isabelle [57], Lean, . . . In this
course, we will use Lean [33, 6, 8, 5].

• Why Lean?

The proof assistant Lean is an active and dynamically developing
project; the Lean community already created many mathematical li-
braries and Lean is used in several ambitious formalisation projects
in mathematics [65, 51, 12]. Moreover, Lean offers a convenient web
interface [35] that allows to experiment with Lean without a proper
installation.

The vast progress currently seen in the Lean community implies that
some of the details of these notes will be quickly outdated. However, the
underlying principles and ideas will be more long-lived and also apply
to a certain extent to other proof assistants.

1.2 Foundations

The formalisation of mathematics consists of the following components:

• a universe of objects,

• a language of logic,

• a concept of proof,

• and usually a meta language (in which all of this is formulated).

The fact that these different levels interact with each other in various ways
makes it challenging to give a complete and rigorous treatment of foundations
of mathematics.

In classical pen-and-paper proofs, we usually work with set theory (e.g.,
ZFC or NBG), with a classical logic (but there are also other interesting
choices!), and a proof calculus that enables us to decompose, construct, and
recombine logical statements.

Lean is a functional programming language. Lean is based on type theory
and the calculus of inductive constructions [19] instead of set theory, offers
a choice between classical and intuitionistic logic, and the proof calculus is

8 1 The Lean Proof Assistant

based on the Curry–Howard isomorphism (a correspondence between proofs
and implementations of terms/functions with suitable types; Section 1.4).

Caveat 1.2.1. Thus, strictly speaking, statements formalised in Lean do not
necessarily have the same meaning as their pen-and-paper counterparts (even
though they might look “equal”). For our applications and large parts of
mathematical research, these subtle differences will not be relevant.

1.3 Types

The programming language Lean is statically typed, i.e., all terms are subject
to typing rules [14] and their types are declared or inferred at compile-time.
We will see in subsequent chapters how Lean types can be used to formalise
mathematical properties, statements, proofs, structures, and examples. On
a first reading, the rest of this section could be skipped and only consulted
when the need arises.

Types in Lean can be constructed by combining the following construc-
tions; these constructions do have overlaps and the list is not complete.

• Function types (symbol →): If A and B are types, then A → B denotes
the type of all functions from A to B.

• Pair types (symbol ×): If A and B are types, then A × B denotes the
type of all pairs with first component of type A and second component
of type B.

• Inductive types (keyword inductive): Inductive types have a finite list
of constructors that may recursively depend on each other.

Examples of inductive types are simple enumeration types (p. 27), the
natural numbers (p. 31), lists, trees, . . .

• Record types (keyword structure): Record types have only a single
constructor on a finite list of fields. These fields can be accessed through
the corresponding projections.

Examples of record types are pair types or combined mathematical
structures that consist of multiple components or properties (p. 53).
Records in Lean are extensible and thus can be used to build theories
hierarchically.

• Moreover, Lean has some support for subtypes and quotients [14, Sec-
tion 2.7.1].

In addition, Lean supports type classes:

1.3 Types 9

• Type classes are a variant of record types (keyword class or, equiva-
lently, @[class] structure). Type classes can be viewed as formalis-
ing a finite set of axioms on the given parameter types. In this view,
giving an instance of a type class corresponds to proving the corre-
sponding axioms on the parameter types. Type classes and their in-
stances are subject to type class inference [63].

Examples of type classes are all sorts of algebraic structures such as
monoids, groups, etc. Analogously, also metric structures and concepts
from category theory are axiomatised through type classes [37].

It is possible to define multiple instances for the same type class over
the same parameter types; mathematically, this corresponds to, e.g.,
defining multiple group structures on the same carrier set.

As Lean is based on dependent type theory, types are first-class citizens
and types can involve constraints and dependencies in the arguments and
result types. In technical terms, the sum and product types underlying func-
tion types, inductive types, and record types are dependent sums (dependent
Sigma types: Σ) and dependent products (dependent Pi types: Π) [59, 16].

For example, the append function on vectors (of given length) has the
following type – where the result type depends on the argument types:

Π {α : Type u_1} {n m : N},
vector α n → vector α m → vector α (n + m)

Here, n m : N states that n and m are of type N. The type Type u_1 is a
type universe, as explained below.

To escape Russell-ish paradoxes involving “the type of all types” in the
presence of powerful constructions, Lean types are organised in a hierarchy:

• Prop (equivalently, Sort 0) is the bottom of the type hierarchy.

Expressions of type Prop are viewed as “propositions”: The type Prop

contains the boolean constants true and false; moreover, logical con-
nectives turn members of type Prop into results of type Prop.

• Type u (equivalently, Sort (u+1)) for a natural number u is a member
of type Type (u+1).

Type is an abbreviation for Type 0 and Type* is an abbreviation
for Type u for some unspecified universe level u.

The type constructors such as → operate on these type universes.

In general, equality is a delicate matter. The standard notion of equality
in Lean is inductive equality [6, Sections 4.2, 7.8, 7.9] and there is also support
for heterogeneous equality.

In Lean, the type Prop enjoys a simple equality behaviour: Members of
type Prop satisfy propositional extensionality : If A : Prop and x, y : A,
then x and y are considered equal in every respect.

10 1 The Lean Proof Assistant

1.4 Proofs

Proofs derive statements from axioms and hypotheses via deduction rules.
The central deduction rule in mathematical proofs is modus ponens:

If statement A is proved and if the implication A =⇒ B is proved, then
it follows that also B is proved.

The Curry–Howard isomorphism [9, 53] identifies

• statements with types and

• proofs of statements with elements of the corresponding type.

Under this translation, modus ponens corresponds to function application:

Given an element of type A and a function A → B, we obtain an element
of type B.

More explicitly: If x : A (i.e., x is of type A) and if f : A → B, then
f x : B. As common in functional programming languages, function
application is denoted by juxtaposition: f x stands for “f applied to x”.

Hence, proofs in Lean are just implementations of functions (and also syn-
tactically look like that):

A lemma of the form below thus says that under the hypothesis that x

has type A (“satisfies A”), then first_result of x has type ϕ x (i.e., ϕ x

is “satisfied”). Usually, ϕ x is a type that represents a concrete mathemat-
ical statement of type Prop (e.g., “x is prime”). Therefore, in this context,
propositional extensionality is also referred to as proof irrelevance: For the
system it only matters that we have a proof of a statement, but it will not
distinguish between different proofs when using the result.

lemma first_result

(x : A)

: ϕ x

:=

begin

...

end

A proof of this lemma is nothing but an implementation of a function
of type Π (x : A), ϕ x and this proof is enclosed in := begin ... end.
On the Lean side, lemma and theorem are shorthand for @[irreducible]

def, i.e., definitions whose implementations will not be touched when the
statement of the lemma is used somewhere else.

1.4 Proofs 11

import tactic -- standard proof tactics

lemma binomial_solution

(x : Z)
: x^2 - 2 * x + 1 = 0 ↔ x = 1

:=

begin

have one_is_solution : x = 1 → x^2 - 2 * x + 1 = 0, from

begin

assume x_is_1 : x = 1,

show x^2 - 2 * x + 1 = 0,

by {rw[x_is_1], ring},

end,

have solution_is_one : x^2 - 2 * x + 1 = 0 → x = 1, from

begin

assume x_is_solution : x^2 - 2 * x + 1 = 0,

have xminus1_squared_is_0 : (x-1)^2 = 0, by

calc (x-1)^2 = x^2 - 2 * x + 1 : by ring_nf

... = 0 : by exact x_is_solution,

have xminus1_is_0 : x - 1 = 0,

by exact pow_eq_zero xminus1_squared_is_0,

calc x = x - 1 + 1 : by ring

... = 1 : by {rw[xminus1_is_0], ring},

end,

show _, by exact {mp := solution_is_one,

mpr := one_is_solution},

end

Figure 1.1: A first Lean proof; try it online! [46]

Usually, proofs of statements involve several steps. Instead of writing such
a proof directly as a single function term, one can alternatively construct the
proof step by step in tactic mode (enclosed in begin and end). The claim of
a lemma becomes a goal that has to be reached. During the proof such goals
are manipulated; depending on the used deduction rules and intermediate
claims, goals are resolved, reformulated, or new goals are added. The proof
is complete once all goals are reached.

A first example of such a proof is given in Figure 1.1. Ignoring the Lean-
specific language for now, the proof is comprehensible for a human reader.

https://leanprover-community.github.io/lean-web-editor/#code=import%20tactic%20--%20standard%20proof%20tactics%0A%0Alemma%20binomial_solution%20%0A%20%20%20%20%20%20%28x%20%3A%20%E2%84%A4%29%0A%20%20%20%20%3A%20x%5E2%20-%202%20*%20x%20%2B%201%20%3D%200%20%E2%86%94%20x%20%3D%201%0A%3A%3D%0Abegin%0A%20%20--%20We%20show%20both%20implications%20individually%0A%0A%20%20have%20one_is_solution%20%3A%20x%20%3D%201%20%E2%86%92%20x%5E2%20-%202%20*%20x%20%2B%201%20%3D%200%2C%20from%0A%20%20begin%0A%20%20%20%20assume%20x_is_1%20%3A%20x%20%3D%201%2C%0A%20%20%20%20show%20x%5E2%20-%202%20*%20x%20%2B%201%20%3D%200%2C%20%0A%20%20%20%20%20%20%20%20%20by%20%7Brw%20%5Bx_is_1%5D%2C%20ring%7D%2C%0A%20%20end%2C%0A%0A%20%20have%20solution_is_one%20%3A%20x%5E2%20-%202%20*%20x%20%2B%201%20%3D%200%20%E2%86%92%20x%20%3D%201%2C%20from%0A%20%20begin%20%0A%20%20%20%20assume%20x_is_solution%20%3A%20x%5E2%20-%202%20*%20x%20%2B%201%20%3D%200%2C%0A%20%20%20%20--%20nlinarith%20solves%20this%20right%20away%2C%20%0A%20%20%20%20--%20but%20we%20give%20a%20human-readable%20proof%0A%0A%20%20%20%20have%20xminus1_squared_is_0%20%3A%20%28x-1%29%5E2%20%3D%200%2C%20by%20%0A%20%20%20%20calc%20%28x-1%29%5E2%20%3D%20x%5E2%20-%202%20*%20x%20%2B%201%20%3A%20by%20ring_nf%0A%20%20%20%20%20%20%20%20%20%20%20%20%20...%20%3D%200%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3A%20by%20exact%20x_is_solution%2C%0A%0A%20%20%20%20have%20xminus1_is_0%20%3A%20x%20-%201%20%3D%200%2C%20%0A%20%20%20%20%20%20%20%20%20by%20exact%20pow_eq_zero%20xminus1_squared_is_0%2C%0A%0A%20%20%20%20calc%20x%20%3D%20x%20-%201%20%2B%201%20%3A%20by%20ring%0A%20%20%20%20%20%20%20...%20%3D%201%20%20%20%20%20%20%20%20%20%3A%20by%20%7Brw%5Bxminus1_is_0%5D%2C%20ring%7D%2C%0A%20%20end%2C%0A%0A%20%20show%20_%2C%20by%20exact%20%7Bmp%20%20%3A%3D%20solution_is_one%2C%20%0A%20mpr%20%3A%3D%20one_is_solution%7D%2C%0Aend

12 1 The Lean Proof Assistant

Examples with full explanations of all essential steps will be the topic of the
rest of these notes.

The proof state is tracked and checked by the Lean system. In interac-
tive development environments, looking at the proof state helps to write (or
follow) proofs. The proof state at each position in the source code can be
queried, displaying the hypotheses and open goals that are active at this
position.

However, in the source code itself, parts of the state remain implicit and
sometimes also the implicit order can play a role; in order to highlight the un-
derlying ideas and to increase readability and robustness it is therefore recom-
mended to make proofs more explicit than Lean would require. While library
code often strives for brevity, in these notes, we will aim at producing human-
readable proofs. For example, in Figure 1.1, the proof of solution_is_one
could be abbreviated in the following short (but intransparent) way:

assume x_is_solution : x^2 - 2 * x + 1 = 0,

nlinarith

The individual steps in proofs usually consist of the elimination or intro-
duction of logical constructs (see Chapter 2.1.2):

• The proof of a combined statement requires an introduction (e.g., the
introduction of quantifiers or logical connectors).

• The extraction of components of combined statements requires an elim-
ination (e.g., the extraction of the components of an and-statement or
the extraction of a witness from an existential statement).

While this plan sounds simple enough, formalisation can sometimes turn into
a frustrating endeavour. As always [1]: Don’t panic!

How to get stuck:

• Trying to do too many steps at once.

• Trying to prove a false claim.

How to get unstuck:

• Check on the pen-and-paper level that the claim is indeed correct.

• Try first to establish the overall proof structure: Try to subdivide your
proof into well-structured arguments, using sorry to take intermediate
steps for granted. If necessary, subdivide into further steps.

• Help the proof assistant to unfold the relevant definitions.

• Use hint to get a list of tactics that make progress on the current goal.

One should be aware that local progress might not result in global
progress. Often hint will suggest the normalising tactics norm_num,
norm_cast, or the “finishing” tactics tauto, finish that make an at-
tempt at automatically solving the current goal completely.

1.4 Proofs 13

proving it (introduction) using it (elmination)

∀ inj_comp_injfirst (p. 24) inj_comp_injfirst (p. 24)
∃ surj_comp_surjsecond (p. 25) surj_comp_surjsecond (p. 25)
∧ surj_inj_bij (p. 24) bij_inj (p. 23)
∨ union_is_subset_closed (p. 78) union_is_subset_closed (p. 78)
→ inj_comp_injfirst (p. 24) inj_comp_injfirst (p. 24)
¬ not_inj_f (p. 27) iso_implies_not_not_isomorphic (p. 130)

Figure 1.2: Examples of standard proof patterns in these notes

def definition

let local definition

lemma, theorem,
have, . . .

claims a statement; introduces corresponding goals;
requires a proof

show claims/solves a goal; if successful, this goal will be
removed from the active list of goals

by gives a justification;
can interact with other statements or proof strategies
via apply, exact, simp, rw, refine, arith, . . .

calc a calculation chain of, e.g., equalities or inequalities

Figure 1.3: Basic Lean vocabulary

• Use suggest to get a list of theorems or definitions that apply via exact

or refine to the current situation.

These suggestions do not necessarily make progress in any way, but can
still be helpful.

• Use library_search to try to solve the current goal by a single appli-
cation of a result from the library.

• Browse mathlib to find relevant results.

• Look for a similar statement/proof in a library.

• Repeat!

A selection of the Lean vocabulary and tactics are collected in Figure 1.3
and Figure 1.4. More details on the exact syntax and arguments/options
can be found in the documentation [5, 6, 33, 8]. Examples of standard proof
patterns are listed in Figure 1.2. Standard Lean unicode symbols and their
VSCode transcriptions are listed in Figure 1.5.

14 1 The Lean Proof Assistant

assume introduces an identifier, as preparation for a proof of
an all-statement or an implication

unfold unfolds a definition

use prove an existential statement from an example

rcases recursive pattern matching;
extracts, e.g., a witness from an existential term

cases proof by case distinction

induction proof by induction (not only over natural numbers)

hint, suggest,
library_search

tactics that search for ways to make progress in the
proof

sorry pretends to be a proof (useful for developing the over-
all structure of a proof)
or a value of the given type (usually dangerous)

exact solves the current goal by giving an exact proof term

refine like exact, but can contain wildcards/holes _

that may lead to new goals

apply tries to match the conclusion of the argument to the
current goal; might create new goals

simp, dsimp tries to use lemmas and hypotheses to simplify the
current goal;
dsimp is like simp, using only definitional equalities

rw applies the argument as a rewrite rule to the current
goal

refl tries to resolve the goal through definitional equality

tauto, tauto!,
finish

finishing tactics, trying to solve the goal completely
using basic logic, definitional equalities, etc.

arith, linarith,
omega, ring, . . .

tactics that handle arithmetic equalities and inequal-
ities of various types; particularly convenient in com-
bination with calc

norm_num,
norm_cast

normalise expressions in various ways

.mp, .mpr extracts implications from left to right (or right to
left, respectively) from equivalences

.symm converts equalities x = y into y = x.

Figure 1.4: Basic Lean tactics and conversions

1.4 Proofs 15

→ \to function type/implication
↔ \iff equivalence (on Prop)
× \times product type
∀ \forall all quantifier
∀f \allf modified all quantifier (almost all)
∃ \exists existential quantifier
∧ \and logical and
∨ \or logical or
¬ \not logical not
<- \leq less or equal than

>- \geq greater or equal than

∈ \in is element of
/∈ \nin is not an element of
⊆ \sub is subset of
⊂ \subset is proper subset of
∪ \cup union
∩ \cap intersection
◦ \circ function composition
−1 \^-1 inverse∑

\sum sum operator∏
\prod product operator

↑ \u type coercion
C \C the type complex of complex numbers
N \N the type nat of natural numbers
R \R the type real of real numbers
Z \Z the type int of integers
−→ \hom type of morphisms
1 \b1 identity morphism
∼= \cong type of isomorphisms
� \gg forward composition of morphisms
⇀⇁ \func type of functors
≫ \ggg forward composition of functors
= = equality
== == heterogeneous equality (not the same as equality!)
Σ \Sigma dependent sum type
Π \Pi dependent product type

Figure 1.5: Standard Lean unicode symbols and their VSCode transcriptions

16 1 The Lean Proof Assistant

1.E Exercises

Exercise 1.E.1 (generating pen-and-paper formulas). Give pen-and-paper de-
scriptions of the following notions or statements, using logical formulas only
(and basic arithmetic structures):

1. Squares of real numbers are non-negative.

2. There is no natural number whose double is 1.

3. The ring of integers has no zero divisors.

4. The equation x2 = 2022 has exactly two solutions in the real numbers.

5. The triangle inequality for the absolute value on real numbers.

6. Convergence of a sequence of real numbers.

Exercise 1.E.2 (understanding pen-and-paper formulas). Let X be a set and
let f, g : X −→ X be maps. What do the following formulas express?

1. ∃y∈X ∀x∈X f(x) = y

2. ∀x∈X f
(
g(x)

)
= x

3. ∀x∈X g
(
f(x)

)
= x

4. ∀x∈X ∃x′∈X f(x′) = g(x)

Exercise 1.E.3 (theorems as pen-and-paper formulas). Give pen-and-paper for-
mulations of the following theorems, using logical formulas only (and basic
algebraic structures):

1. Fermat’s little theorem

2. Fermat’s last theorem

Exercise 1.E.4 (structuring a proof). Pick your favourite textbook in under-
graduate mathematics and pick your favourite theorem/proof in this book.

1. Structure the proof into small steps.

2. Which of the steps in the proof are

• introductions of logical constructors?

• eliminations of logical constructors?

• applications of previous results?

• calculations?

Exercise 1.E.5 (Lean installation). Install Lean and a suitable editor [34].

Exercise 1.E.6 (other proof assistants). Compare the Lean example in Fig-
ure 1.1 with its relatives in Coq (Figure 1.6) and Isabelle/HOL (Figure 1.7).

1.E Exercises 17

Require Import ZArith_base ZArithRing Psatz.

Open Scope Z_scope.

Require Import ssreflect ssrfun ssrbool.

Lemma pow_eq_zero : forall (x : Z),

x^2 = 0 -> x = 0.

Proof.

nia.

Qed.

Theorem binomial_solution : forall (x : Z),

x^2 - 2 * x + 1 = 0 <-> x = 1.

Proof.

(* Let x : Z *)

intro x.

(* We show both implications individually *)

have one_is_solution : x = 1 -> x^2 - 2 * x + 1 = 0.

intro x_is_1.

rewrite x_is_1.

trivial.

have solution_is_one : x^2 - 2 * x + 1 = 0 -> x = 1.

intro x_is_solution.

(* nia solves this right away,

but we give a human-readable proof *)

have binomi : (x-1)^2 = x^2 - 2 * x + 1.

by ring.

have xminus1_squared_is_0 : (x-1)^2 = 0.

by rewrite binomi.

have xminus1_is_0 : x - 1 = 0.

by exact : pow_eq_zero (x-1) xminus1_squared_is_0.

have x_is_xminus1plus1 : x = x - 1 + 1.

by ring.

have x_is_1 : x = 1.

rewrite xminus1_is_0 in x_is_xminus1plus1.

exact x_is_xminus1plus1.

exact x_is_1.

split.

* exact solution_is_one.

* exact one_is_solution.

Qed.

Figure 1.6: A first Coq proof

18 1 The Lean Proof Assistant

theory intro_example

imports Main "HOL-Algebra.Group"

begin

theorem binomial_solution:

fixes x :: "int"

shows "x^2 - 2 * x + 1 = 0 \<longleftrightarrow> x = 1"

proof (intro iffI)

text \<open>We show both implications individually\<close>

show one_is_solution :

"x = 1 \<Longrightarrow> x^2 - 2 * x + 1 = 0"

proof -

assume x_is_one : "x = 1"

show "x^2 - 2 * x + 1 = 0"

using x_is_one by simp

qed

show solution_is_one :

"x^2 - 2 * x + 1 = 0 \<Longrightarrow> x = 1"

proof -

assume x_is_solution : "x^2 - 2 * x + 1 = 0"

have xminus1_squared_is_0 : "(x-1) * (x-1) = 0"

proof -

have "(x-1) * (x-1) = x^2 - 2 * x + 1"

by (simp add : power2_eq_square algebra_simps)

also have "\<dots> = 0"

using x_is_solution by simp

finally show ?thesis by this

qed

have xminus1_is_0 : "x - 1 = 0"

using xminus1_squared_is_0

divisors_zero[of "x-1" "x-1"]

by simp

show "x = 1"

using xminus1_is_0 by simp

qed

qed

end

Figure 1.7: A first Isabelle/HOL proof

2

Basic Examples

We first practice basic proof techniques in Lean at the example of injectivity
and surjectivity of maps.

We then start interacting with the Lean library mathlib. The mathlib pro-
vides a wide range of proof tactics and mathematical libraries to simplify the
task of formalising and proving mathematical statements. We illustrate this
in the following situations:

• We get acquainted with basic induction proofs, using geometric sums
as example. Such proofs are very common.

• As an example of algebraic structures provided by mathlib, we look at
commutators in group theory.

• We give two proofs of a vanishing criterion for real numbers.

In each of the examples, we first develop a pen-and-paper version and
then formalise it in Lean. Many Lean proofs in current libraries or other Lean
code aim at brevity and will only be comprehensible when viewed in a Lean
interpreter. We pursue a different path: We make all relevant steps in Lean
proofs explicit enough that they can be understood and enjoyed by humans.

Overview of this chapter.

2.1 Injectivity and Surjectivity of Maps 20
2.2 Induction 29
2.3 Commutators 35
2.4 The Real Zero 38
2.E Exercises 44

20 2 Basic Examples

2.1 Injectivity and Surjectivity of Maps

We practice basic proof techniques in Lean by formalising simple examples of
properties of maps, such as injectivity, surjectivity, etc. Of course, all these
facts are available in the standard libraries (Exercise 2.E.5). In this section,
the focus is on learning how to formulate statements and proofs in Lean.

2.1.1 Pen-and-Paper

As a first step, we note down what we want to state and prove in classical
pen-and-paper style. As always, a theory consists of definitions, theorems,
and examples. Being precise and well-structured in this phase will simplify
the formalisation step.

Definition 2.1.1 (injective). Let X and Y be sets and let f : X −→ Y be a
map. The map f is called injective if

∀x,x′∈X f(x) = f(x′) =⇒ x = x′.

Definition 2.1.2 (surjective). Let X and Y be sets and let f : X −→ Y be a
map. The map f is called surjective if

∀y∈Y ∃x∈X f(x) = y.

Definition 2.1.3 (bijective). Let X and Y be sets and let f : X −→ Y be a
map. The map f is called bijective if f is injective and f is surjective.

Proposition 2.1.4. Let X and Y be sets and let f : X −→ Y be a map. Then:

1. If f is bijective, then f is injective.

2. If f is bijective, then f is surjective.

3. If f is surjective and injective, then f is bijective.

Proof. Ad 1. Let f be bijective, i.e., f is injective and surjective. In particular,
f is injective (elimination property of and-clauses).

Ad 2. Let f be bijective, i.e., f is injective and surjective. In particular, f
is surjective (elimination property of and-clauses).

Ad 3. Let f be surjective and injective. Then, f is also injective and sur-
jective (commutativity of the logical operator “and”). Hence, f is bijective
(by definition of “bijective”).

Proposition 2.1.5. Let X, Y , Z be sets and let f : X −→ Y , g : Y −→ Z be
maps.

2.1 Injectivity and Surjectivity of Maps 21

1. If g ◦ f is injective, then f is injective.

2. If g ◦ f is surjective, then g is surjective.

Proof. Ad 1. Let g ◦ f be injective. Let x, x′ ∈ X with f(x) = f(x′). Then

g ◦ f(x) = g
(
f(x)

)
(by definition of ◦)

= g
(
f(x′)

)
(because f(x) = f(x′))

= g ◦ f(x′). (by definition of ◦)

Because g ◦ f is injective, it follows that x = x′. Hence, f is injective.

Ad 2. Let g ◦ f be surjective. Let z ∈ Z. Because g ◦ f is surjective, there
exists an x ∈ X with g ◦ f(x) = z. We consider y := f(x) ∈ Y . Then, we
obtain

g(y) = g
(
f(x)

)
(by definition of y)

= g ◦ f(x) (by definition of ◦)
= z. (by the choice of x)

Hence, g is surjective.

Corollary 2.1.6. Let X be a set and let f : X −→ X be a map such that f ◦ f
is bijective. Then f is bijective.

Proof. We show that f is injective and surjective:

• The map f is injective, because: As f ◦ f is bijective, f ◦ f is injective.
Applying Proposition 2.1.5 (first part) shows that f is injective.

• The map f is surjective, because: As f ◦f is bijective, f ◦f is surjective.
Applying Proposition 2.1.5 (second part) shows that f is surjective.

As f is injective and surjective, we conclude that f is bijective.

Example 2.1.7. We consider the map

f : {1, 2, 3} −→ {1, 2, 3}
1 7−→ 1

2 7−→ 1

3 7−→ 2.

Then the map f is not injective (because f(1) = 1 = f(2) but 1 6= 2) and f
is not surjective (because 3 is not a value of f).

22 2 Basic Examples

Example 2.1.8. The map

g : {1, 2} −→ {1, 2}
1 7−→ 2

2 7−→ 1

is bijective: Checking all elements shows that g is both injective and surjective
and thus bijective.

2.1.2 Lean

We implement the material from Section 2.1.1 in Lean. The Lean sources for
these notes are available as a git repository [47].

Source code 2.1.9. This is maps.lean of the git repo [47].

Try out the Lean programs in a local Lean installation [34] or in the Lean
web interface [35]! For more complex projects and a more efficient workflow,
a local installation is highly recommended [36].

We start with general declarations and imports:

import tactic -- standard proof tactics

open classical -- we work in classical logic

The definitions of injectivity, surjectivity, and bijectivity are straightfor-
ward adaptions of their pen-and-paper counterparts (Definitions 2.1.1–2.1.3).
The declarations before := are the hypotheses of the definition. As Lean is
based on type theory, we replace sets by Lean types and maps by Lean func-
tions. The actual definition follows after :=. For the notions of injectivity,
surjectivity, and bijectivity, these are just the corresponding logical formulas.
For example, the definition of injectivity then reads as follows:

def is_injective

(X : Type*)

(Y : Type*)

(f : X → Y)

:= ∀ x : X, ∀ x’ : X,

f x = f x’ → x = x’

To simplify the use of is_injective, we modify the definition as follows:

def is_injective

{X Y : Type*}

(f : X → Y)

:= ∀ x : X, ∀ x’ : X,

f x = f x’ → x = x’

2.1 Injectivity and Surjectivity of Maps 23

The curly braces around X Y : Type* turn X and Y into implicit argu-
ments of type Type*. This means that when using is_injective we usually
only need to supply the function argument; the types X and Y will be in-
ferred whenever possible. In case Lean cannot infer these placeholders, we
can make the arguments explicit by writing @is_injective and supplying
all arguments.

Similarly, we define surjectivity and bijectivity:

def is_surjective

{X Y : Type*}

(f : X → Y)

:= ∀ y : Y,

∃ x : X, f x = y

def is_bijective

{X Y : Type*}

(f : X → Y)

:= is_injective f ∧ is_surjective f

In Lean, in logical formulas, implication is denoted by the function ar-
row → (Curry–Howard isomorphism!). Equality is denoted by = (and yields
a truth/Prop value).

Simple inheritance properties As next step, we state and prove basic inher-
itance properties for injective, surjective, bijective maps (Proposition 2.1.4–
Corollary 2.1.6).

The hypotheses are listed before : and the claimed conclusion after :. The
proof follows after :=; it is useful to recall that under the Curry–Howard
isomorphism proofs correspond to implementations of functions.

The first three lemmas correspond to Proposition 2.1.4. The first two parts
(bij_inj, bij_surj) are proved by extracting the correct parts from the
defining ∧-formula; these are elimination steps. These proofs are so simple
that we can construct the proof term as a single function application; there-
fore, we do not switch to the tactic mode enclosed in begin and end.

lemma bij_inj

{X Y : Type*}

(f : X → Y)

(f_bijective: is_bijective f)

: is_injective f

:= and.elim_left f_bijective

lemma bij_surj

{X Y : Type*}

(f : X → Y)

(f_bijective: is_bijective f)

: is_surjective f

:= and.elim_right f_bijective

24 2 Basic Examples

The third part is proved by re-assembling the ∧-formula in the correct
order; this is an introduction/construction step.

lemma surj_inj_bij

{X Y : Type*}

(f : X → Y)

(f_surjective: is_surjective f)

(f_injective: is_injective f)

: is_bijective f

:= and.intro f_injective f_surjective

The lemmas inj_comp_injfirst and surj_comp_surjsecond are trans-
lations of Proposition 2.1.5; we took the liberty to shift the first part of the
If-statements into the hypotheses. In pen-and-paper proofs, such modifica-
tions are usually implicit; in Lean, all of this is explicit (but can be easily
converted into each other).

For the Lean proofs, we closely follow the pen-and-paper proofs, using
suitable Lean concepts.

lemma inj_comp_injfirst

{X Y Z : Type*}

(f : X → Y)

(g : Y → Z)

(gf_injective : is_injective (g ◦ f))

: is_injective f

:=

begin

assume x : X,

assume x’ : X,

assume f_xx’ : f x = f x’,

have gf_xx’ : (g ◦ f) x = (g ◦ f) x’, from

calc (g ◦ f) x = g (f x) : by simp

... = g (f x’) : by simp[f_xx’]

... = (g ◦ f) x’ : by simp,

show x = x’,

by {apply gf_injective, apply gf_xx’},

end

What happens in this proof? In order to show is_injective f, we need to
establish a double ∀-statement. Such statements can be proved/constructed
by showing the corresponding inner statement for every possible candidate;
these candidates are introduced by assume.

Inside of the double ∀-statement, we need to prove an implication. Such
an implication can be proved/constructed by assuming the left-hand side
and deriving the right-hand side; this assumption on the left-hand side is
introduced by assume and is given the name f_xx’.

2.1 Injectivity and Surjectivity of Maps 25

We then introduce an intermediate claim via have (with the name gf_xx’),
which is proved through a calculation, as indicated by calc.

Finally, we can apply the hypothesis gf_injective and the computation
gf_xx’ to conclude that x = x’ (which is the desired right-hand side of the
implication). Because this argument after by consists of two tactic steps, we
need to enclose it in curly braces. At this point, all goals are resolved and the
proof is complete.

Alternatively, one could also prove inj_comp_injfirst in a more implicit
proof style. While the proof becomes significantly shorter, it also becomes
much harder to understand for a human reader without stepping through an
interactive Lean environment:

begin

intros _ _ h,

apply gf_injective,

simp[h],

end

We now turn to the second part of of Proposition 2.1.5:

lemma surj_comp_surjsecond

{X Y Z : Type*}

(f : X → Y)

(g : Y → Z)

(gf_surjective : is_surjective (g ◦ f))

: is_surjective g

:=

begin

assume z : Z,

rcases gf_surjective z with 〈 x : X, gf_x_z : (g ◦ f) x = z〉,
let y : Y := f x,

use y,

show g y = z, from

calc g y = g (f x) : by simp

... = (g ◦ f) x : by simp

... = z : by exact gf_x_z,

end

Similarly, in order to prove the inheritance of surjectivity, we construct
the desired ∀-statement. Surjectivity of the composition gives us existence
of a preimage for the composition. To extract such a preimage from the ∃-
statement, we can use rcases to eliminate the quantifier and extract a witness
(whose defining property is named gf_x_z). Through let, we introduce a
new name y for the term f x (which will serve as the desired preimage for x
under g). To build the claimed ∃-statement, it suffices to give one suitable
example; this is introduced via use. Finally, a small calculation finishes the
proof by showing that y has the correct properties.

26 2 Basic Examples

Also, the proof of the Lean-counterpart of Corollary 2.1.6 is a direct trans-
lation of our pen-and-paper proof:

lemma square_bij_bij

{X : Type*}

(f : X → X)

(ff_bijective : is_bijective (f ◦ f))

: is_bijective f

:=

begin

have f_injective : is_injective f, from

begin

have ff_injective : is_injective (f ◦ f),

by exact bij_inj (f ◦ f) ff_bijective,

show _,

by exact inj_comp_injfirst f f ff_injective,

end,

have f_surjective: is_surjective f, from

begin

have ff_surjective : is_surjective (f ◦ f),

by exact bij_surj (f ◦ f) ff_bijective,

show _,

by exact surj_comp_surjsecond f f ff_surjective,

end,

show is_bijective f,

by exact and.intro f_injective f_surjective,

end

The symbol _ asks Lean to try to infer suitable expressions fitting into these
“holes”. In particular, show _, refers to resolving the active claim. Using such
holes can be convenient; however, one should keep in mind that sometimes
being more explicit can help the reader to follow the arguments.

Examples Finally, we explain how to formalise Example 2.1.7 and Exam-
ple 2.1.8 in Lean. At this point, we will deviate slightly from the pen-and-
paper examples: In pen-and-paper mathematics, sets of the form {1, 2, 3} and
functions between such sets are quickly handled; however, implicitly, many
statements would require a proof: e.g., in the definition of the map f in Ex-
ample 2.1.7, it is implicit that all terms on the right-hand side indeed lie
in {1, 2, 3} and that all points in {1, 2, 3} occur exactly once on the left-
hand side. All of this can be done in Lean. However, for the purpose and the
spirit of the Examples 2.1.7 and 2.1.8 it is much simpler to work with simple
sum/enumeration types instead of with sets of natural numbers.

2.1 Injectivity and Surjectivity of Maps 27

The following type A has exactly three values, namely A_1, A_2, A_3. Func-
tions on this type can conveniently be defined by a case distinction. Similarly,
also proofs can make use of such case distinctions via cases.

inductive A : Type

| A_1

| A_2

| A_3

def f

: A → A

| A.A_1 := A.A_1

| A.A_2 := A.A_1

| A.A_3 := A.A_2

As in Example 2.1.7, we show that this map f is neither injective nor
surjective. We follow the outline from Example 2.1.7; but we need to handle
the implicit relocation of the negation in the pen-and-paper version. This is
performed by simplification with not_forall (from the standard libraries).

lemma not_inj_f

: ¬ is_injective f

:=

begin

-- idea: f A_1 = f A_2, even though A_1 6= A_2

let x : A := A.A_1,

let x’ : A := A.A_2,

have f_xx’_x_neq_x’ : f x = f x’ ∧ x 6= x’, from

begin

have f_xx’ : f x = f x’,

by simp[f],

have x_neq_x’ : x 6= x’,

by finish,

show _, by exact and.intro f_xx’ x_neq_x’,

end,

show ¬ is_injective f, from

begin

simp only[is_injective, not_forall],

use x,

use x’,

exact f_xx’_x_neq_x’,

end

end

28 2 Basic Examples

lemma not_surj_f

: ¬ is_surjective f

:=

begin

simp only[is_surjective, not_forall],

show ∃ y : A, ¬(∃ x : A, f x = y), by

begin

-- we show that A_3 does not lie in the image

use A.A_3,

have A3_not_in_im : ∀ x : A, ¬ f x = A.A_3, from

begin

assume x : A,

-- we now just consider all three cases

cases x,

case A.A_1 : {simp[f]}, -- alternatively: {finish}

case A.A_2 : {simp[f]},

case A.A_3 : {simp[f]},

end,

show _, by {simp only[not_exists], exact A3_not_in_im}

end

end

Similarly, we can also transform Example 2.1.8 into Lean. We check injec-
tivity and surjectivity by going through all the cases:

inductive B

| B_1

| B_2

def g : B → B

| B.B_1 := B.B_2

| B.B_2 := B.B_1

lemma bij_g

: is_bijective g

:=

begin

have inj_g : is_injective g, from

begin

assume x : B,

assume x’ : B,

assume g_xx’ : g x = g x’,

cases x,

case B.B_1 : begin cases x’, finish, finish end,

case B.B_2 : begin cases x’, finish, finish end,

end,

2.2 Induction 29

have surj_g : is_surjective g, from

begin

assume y : B,

cases y,

case B.B_1 : begin use B.B_2, finish end,

case B.B_2 : begin use B.B_1, finish end,

end,

show _, by exact surj_inj_bij g surj_g inj_g

end

Alternative proofs for not_inj_f and bij_g are developed in Exer-
cise 2.E.3 and Exercies 2.E.4.

The source code maps.lean also contains an indication of how to do these
examples with sets {1, 2, 3} and {1, 2} of natural numbers instead of via the
enumeration types A and B, respectively. The interplay between sets and types
is discussed in Section 3.1.1.

Caveat 2.1.10 (empowering the simplifier). Equational lemmas and theorems
(lemma, theorem) can be given the attribute @[simp], adding these state-
ments to the simplifier. The simplifier can then use these equations, thus
possibly leading to shorter proofs. However, two things should be kept in
mind:

• The statements should correspond to actual simplifications, i.e., the
right-hand side should be “simpler” than the left-hand side.

• Adding statements to the simplifier will shorten proofs, but might ob-
scure the ideas behind arguments as statements are used implicitly.

In general, it is considered good practice to avoid the use of non-terminal
simp. A simp (or dsimp) is non-terminal if it does not resolve the current
goal, but only performs an intermediate step. The problem with non-terminal
simp is that the set of simplifications available to the simplifier can change in
future library versions. In particular, the simplifier might then simplify more
than intended, thus breaking proofs. Non-terminal occurences of simp should
therefore be limited by using simp only.

2.2 Induction

The natural numbers are built on the induction principle. Therefore, induc-
tive definitions and inductive proofs play a prominent role in the context of
natural numbers.

We will get acquainted with basic inductive definitions and proofs (over
the natural numbers), using geometric sums as example. The goal is to give
a closed expression for the geometric sums

∑n
j=0 2j with n ∈ N.

30 2 Basic Examples

2.2.1 Pen-and-Paper

As a first step, we note down what we want to formulate and prove in classical
pen-and-paper style.

Proposition 2.2.1. Let n ∈ N. Then

n∑
j=0

2j = 2n+1 − 1.

Proof. We prove the claim by induction on n:

• Base case. For n = 0, we obtain

n∑
j=0

2j = 20 = 1 = 20+1 − 1,

as claimed.

• Induction hypothesis. Let m ∈ N. We assume that the claim is proved
for m, i.e., that

∑m
j=0 2j = 2m+1 − 1.

• Induction step. We show that the claim then also holds for m + 1. To
this end, we calculate

m+1∑
j=0

2j =

m∑
j=0

2j + 2m+1 (by definition of
∑

)

= 2m+1 − 1 + 2m+1 (by the induction hypothesis)

= 2 · 2m+1 − 1

= 2m+1+1 − 1, (by definition of exponentiation)

as claimed.

2.2.2 Lean

We implement the material from Section 2.2.1 in Lean.

Source code 2.2.2. This is induction.lean of the git repo [47].

We start with general declarations and imports:

import tactic -- standard proof tactics

open classical -- we work in classical logic

2.2 Induction 31

In order to define geometric sums, we first pretend that we don’t know
anything about the sum operators provided by mathlib (Section 2.2.3). Thus,
we first need to define the geometric sum at base 2 up to a given natural
number. This is an inductive definition over the natural numbers.

Before we give this inductive definition, we briefly explain how natural
numbers appear in Lean: In Lean, the inductive nature of natural numbers is
reflected in the (inductive) construction of the datatype nat:

inductive nat : Type

| zero : nat

| succ : nat → nat

In other words, the datatype nat has two constructors:

• The constructor zero (which is a constant of type nat) and

• The constructor succ (which turns natural numbers into natural num-
bers).

The Peano axioms require that zero is not the successor of any natural number
(this is guaranteed by the property that Lean constructors are injective), that
no two different natural numbers can have the same successor (again, this
is guaranteed by the injectivity of Lean constructures), and the induction
principle that all natural numbers can be reached as iterated successors of
zero (this is guaranteed by the property that the Lean declaration above
also includes that there is no other way of constructing natural numbers).
Moreover, the type of natural numbers can also be denoted by N in Lean.

We can then define functions with arguments in nat by induction over this
structure; in the case of the geometric sums at base 2, we thus define:

def geometric_sum

: nat → nat

| 0 := 1

| (nat.succ n) := geometric_sum n + 2^(n+1)

The Lean version of Proposition 2.2.1 then reads as follows:

lemma geometric_sum_eval

(n : nat)

: geometric_sum n = 2^(n+1) - 1

:=

As in the pen-and-paper situation, we prove this claim by induction over
the nat-argument. The induction proof is initialised with the induction

keyword; moreover, we can name the induction variable (m) in the induction
step and the induction hypothesis (ind_hyp). The base case and induction
step are indicated by case. This syntax already suggests that Lean induction
proofs are much more general than proofs over natural numbers: We can use
induction proofs for all inductively defined datatypes (e.g., also for the types
A and B from Chapter 2.1.2).

32 2 Basic Examples

begin

induction n with m ind_hyp,

-- base case: 0

case nat.zero : {simp[geometric_sum]},

-- induction step: m -> m+1

case nat.succ :

begin

calc geometric_sum (m+1) = geometric_sum m + 2^(m+1)

: by simp[geometric_sum]

... = 2^(m+1) - 1 + 2^(m+1)

: by simp[ind_hyp]

... = 2^(m+1) + 2^(m+1) - 1

: by omega

... = 2 * 2^(m+1) - 1

: by ring

... = 2^(m+2) - 1

: by ring,

end

end

Here, we used the ring tactic to perform simple calculations in rings and
the omega tactic for specifics of nat arithmetic.

Finally, we note that our definition of geometric sums can also be used
by Lean to evaluate this function on given natural numbers, i.e., to actually
compute geometric sums at base 2:

#eval geometric_sum 0 -- 1

#eval geometric_sum 5 -- 63

Thus, in contrast with pen-and-paper mathematics, a formalisation in Lean
also can allow us to compute simple cases of definitions etc. to test hypotheses.

2.2.3 Lean with Sums

In Section 2.2.2, we considered geometric sums in Lean through an explicit
inductive definition. As finite sums of a variable number of summands are
widely used in mathematics, such sums and ways to handle them are provided
by the main Lean mathematical library: mathlib [37].

In this section, we first consider a very simple example and then also the
geometric sums from Section 2.2.2, using sums as provided by the math-
lib library big_operators. We continue the file induction.lean from Sec-
tion 2.2.2, adding the following declarations:

open finset -- for the range operator

open_locale big_operators -- to enable
∑

notation

2.2 Induction 33

We first consider the sum
∑n−1
j=0 1 with n ∈ N. Using the

∑
-notation, this

sum can be written as follows:

def one_sum

: nat → nat

:= λ n : nat,∑
(i : nat) in range n, 1

The sum notation
∑

is provided by the library big_operators; the nota-
tion range n (which corresponds to {0, . . . , n−1}) is provided by the library
finset. Moreover, λ is the constructor for (unnamed) functions; for exam-
ple λ x, x corresponds to the pen-and-paper notation x 7−→ x.

Of course, we have
∑n−1
j=0 1 = n for all n ∈ N. This statement can be

formalised and proved as in the case of geometric sums in Section 2.2.2:

lemma one_sum_eval

(n : nat)

: one_sum n = n

:=

begin

induction n with m ind_hyp,

-- base case: 0

case nat.zero : {simp[one_sum]},

-- induction step: m -> m+1

case nat.succ :

begin

calc one_sum (m+1) =
∑

(i : nat) in range (m+1), 1

: by simp[one_sum]

... =
∑

((i : nat) in range m, 1) + 1

: by simp

... = m + 1

: by simp[ind_hyp],

end

end

Such proofs are common. Therefore, there is a suitable abstraction avail-
able, the lemma sum_range_induction (in the library big_operators.

basic). How can one find out that such a lemma exists? One can either browse
the mathlib documentation [37] or one can use the tactic library_search

that searches mathlib for statements that can resolve the corresponding goal
(in a single step). As mathlib does not contain anything on our function
one_sum, we first have to unfold its definition:

begin

unfold one_sum,

-- found by library_search:

34 2 Basic Examples

by exact sum_range_induction (λ (k : N), 1) (λ (n : N), n)

rfl (congr_fun rfl) n,

end

It is the objective of Exercise 2.E.8 to figure out what sum_range_induction
exactly is about and how it is proved in mathlib.

We return to the geometric sums. Using the sum notation, we can handle
this example as follows:

def geometric_sum’

: nat → nat

:= λ n,∑
(i : nat) in range n, 2^i

lemma geometric_sum_eval’

(n : nat)

: geometric_sum’ n = 2^n - 1

:=

begin

induction n with m ind_hyp,

-- base case: 0

case nat.zero : {simp[geometric_sum’], ring},

-- induction step: m -> m+1

case nat.succ :

begin

begin

calc geometric_sum’ (m+1)

=
∑

i in range (m+1), 2^i

: by simp[geometric_sum’]

... =
∑

i in range m, 2^i + 2^m

: by exact sum_range_succ (λ x, 2^x) m

... = geometric_sum’ m + 2^m

: by simp[geometric_sum’]

... = 2^m - 1 + 2^m

: by simp[ind_hyp]

... = 2^m + 2^m - 1

: by omega

... = 2^(m+1) - 1

: by ring_nf,

end,

end

2.3 Commutators 35

2.3 Commutators

Groups are basic algebraic structures that are used in many ways. The Lean
mathlib provides a formalisation of many concepts and statements from basic
group theory (in algebra.group).

We will experiment with these libraries by considering commutators in
groups.

2.3.1 Pen-and-Paper

As a first step, we note down what we want to formulate and prove in classical
pen-and-paper style:

Definition 2.3.1 (commutator). Let G be a group, let g, h ∈ G. The commu-
tator of g and h is defined as

[g, h] := g · h · g−1 · h−1 ∈ G.

Proposition 2.3.2. Let G, H be groups, let f : G −→ H be a group homo-
morphism, and let g, h ∈ G. Then

f
(
[g, h]

)
=
[
f(g), f(h)

]
.

Proof. We compute that

f
(
[g, h]

)
= f(g · h · g−1 · h−1

)
(definition of the commutator)

= f(g) · f(h) · f(g−1) · f(h−1) (as f is a group homomorphism)

= f(g) · f(h) ·
(
f(g))−1 ·

(
f(h)

)−1
(as f is a group homomorphism)

=
[
f(g), f(h)

]
, (definition of the commutator)

as claimed.

Proposition 2.3.3. Let G be a group, let a, b ∈ G, and let A := a−1, B := b−1.
Then, we have

[a, b]3 = [abA,BabA2] · [Bab, b2].

Proof. This is a straightforward computation: We have

[abA,BabA2] · [Bab, b2] = abA ·BabA2 · aBA · a2BAb ·Bab · b2 ·BAb ·B2

= abAB · abAB ·Aa2 ·BAbBab · b2B ·A · bB2

= [a, b] · [a, b] · a · 1 · b ·A ·B
= [a, b] · [a, b] · [a, b]
= [a, b]3.

36 2 Basic Examples

The previous proposition is important in the study of stable commutator
length in groups [13].

2.3.2 Lean

We implement the material from Section 2.3.1 in Lean.

Source code 2.3.4. This is commutator.lean of the git repo [47].

We start with general declarations and imports; in particular, we import
basics on groups from the mathlib library algebra.group.basic.

import tactic -- standard proof tactics

import algebra.group.basic -- basic group theory

open classical -- we work in classical logic

Many algebraic structures are represented in Lean by type classes. Type
classes are record types, parametrised over type arguments. Elements of such
record types are called instances for the corresponding type arguments. In-
stances of type classes are inferred and tracked by the type class inference
mechanism.

For instance, the type class semigroup of semi-groups roughly looks as
follows:

@[class]

structure semigroup

(G : Type u)

:= (mul : G → G → G)

(mul_assoc : ∀ (a b c : G), (a * b) * c = a * b * c)

An instance semigroup G for a type G thus corresponds to defining a com-
position mul on G and giving a proof of associativity of mul.

Type classes are extensible and hence can be used to build a hierarchy of
structures. In fact, in mathlib, also semigroup is an extension of another type
class. The type class group is obtained by a chain of type class extensions.

Definition 2.3.1 translates directly to Lean. The expression group G de-
notes an instance of G for the type class group. In this definition, [group G]

is also an argument/hypothesis, but the square brackets turn this into an
implicit argument; this means that when applying cmtr, we do not need to
pass a proof that G is a group as explicit argument but can leave it to the
type class inference mechanism. This unclutters notation.

def cmtr

{G : Type*} [group G]

(g : G)

(h : G)

:= g * h * g−1 * h−1

2.3 Commutators 37

Proposition 2.3.2 can be formalised as follows:

lemma cmtr_hom

{G : Type*} [group G]

{H : Type*} [group H]

(f : monoid_hom G H) -- f is a group homomorphism

(g : G)

(h : G)

: f (cmtr g h) = cmtr (f g) (f h)

:=

Here, f is assumed to be a group homomorphism; as G and H are groups,
this amounts to saying that f is compatible with multplication, i.e., a monoid
homomorphism between the underlying multiplicative monoids.

The proof is a straightforward computation, using from mathlib that f

is compatible with multiplication (mul_hom.map_mul) and compatible with
taking inverses (monoid_hom.map_inv).

The congr tactic iteratively splits goals of the form f x = f’ x’ into
two goals f = f’ and x = x’. This is not always helpful as it might be too
greedy.

begin

calc f (cmtr g h) = f (g * h * g−1 * h−1)

: by simp[cmtr]

... = f g * f h * f (g−1) * f (h−1)

: by simp[mul_hom.map_mul]

... = f g * f h * (f g)−1 * (f h)−1

: by {congr, simp only[monoid_hom.map_inv],

simp only[monoid_hom.map_inv]}

... = cmtr (f g) (f h)

: by simp[cmtr],

end

Finally, we prove Proposition 2.3.3 on triple powers of commutators: triple
powers of commutators can be written as a product of only two commutators.
To this end, we first note that g3 = g · g · g holds for every group element g
(where ·3 is defined by induction . . .):

lemma pow_three

{G : Type*} [group G]

(g : G)

: g^3 = g * g * g

:=

begin

group,

end

Using this lemma, Lean can basically perform the computation in the proof
of Proposition 2.3.3 on its own, using the group tactic:

38 2 Basic Examples

lemma cmtr_pow_three

{G : Type*} [group G]

(a : G) {A : G} {A_def : A = a−1}

(b : G) {B : G} {B_def : B = b−1}

: (cmtr a b)^3

= cmtr (a*b*A) (B*a*b*A^2) * cmtr (B*a*b) (b^2)

:=

begin

unfold cmtr,

by {simp[pow_three,A_def,B_def], group},

end

2.4 The Real Zero

We consider a fundamental criterion for a real number to be zero, based on
the Archimedean property. Real numbers in the Lean mathlib are actual real
numbers, constructed via the Cauchy completion of the rationals, and thus
satisfy the usual axioms of the reals. Such real numbers are not to be confused
with floating point numbers as provided by many programming languages.

2.4.1 Pen-and-Paper

Proposition 2.4.1 (a criterion for being 0). Let x, c ∈ R and suppose that

∀n∈N>0 |x| ≤
c

n
.

Then x = 0.

Proof. Let y := |x|. Because of the definiteness of the absolute value on R, it
suffices to show that y = 0.

On the one hand, by definition, y = |x| ≥ 0.
On the other hand, assume for a contradiction that y > 0. Because R is

Archimedean, there exists an m ∈ N with m > c/y. Let n := m + 1. Then
n > 0 and we have

y =
1

n
· n · y (because n > 0)

>
1

n
·m · y (because 1/n > 0 and y > 0 and m > n)

≥ 1

n
· c
y
· y (by the choice of m)

≥ y, (by the hypothesis on y = |x|)

2.4 The Real Zero 39

and thus y > y. This contradiction shows that y ≤ 0.
In summary, we have y = 0.

2.4.2 Lean

We implement the material from Section 2.4.1 in Lean.

Source code 2.4.2. This is zero.lean of the git repo [47].

The real numbers are provided in data.real.basic.

import tactic -- standard proof tactics

import data.real.basic

import analysis.specific_limits -- for the proof via limits

import order.filter.basic -- dito

open classical -- we work in classical logic

The translation of Proposition 2.4.1 and its proof into Lean is mostly
straightforward. For the formulation of the statement, we need to keep in
mind that the natural numbers “n” implicitly are used as real numbers. In
Lean, we thus need to cast from the type nat to real; this coercion is already
pre-defined (along with its basic properties) and can be invoked by adding the
explicit type signature n : real or by writing ↑n. The coercion framework
is provided by the core library init.has_coe.

lemma zero_via_1_over_n

(x : real)

(c : real)

(x_le_c_over_n : ∀ n : nat, n > 0

→ abs x <- c / (n : real))

: x = 0

:=

Proofs by contradiction are initiated by by_contradiction. This requires
classical logic. We only slightly reformulate the computation to simplify mat-
ters for the arithmetic tactics of Lean. The basics abs_nonneg etc. on reals
are provided by mathlib.

begin

let y : real := abs x,

have y_is_0 : y = 0, from

begin

have y_geq_0 : y >- 0,

by apply abs_nonneg,

40 2 Basic Examples

have y_leq_0 : y <- 0, from

begin

by_contradiction,

have y_pos : y > 0,

by linarith,

-- we use that R is archimedean

have ex_m_big : ∃ m : nat, ↑m > c/y,

by exact exists_nat_gt (c / y),

rcases ex_m_big with 〈 m : nat, m_gt_cy 〉,
-- we enforce positivity by adding 1

let n : nat := m + 1,

have n_pos : n > 0,

by exact nat.succ_pos m,

have n_big : ↑n > c/y, by

calc ↑n > ↑m : by simp

... > c/y : by exact m_gt_cy,

-- using n, we show that n * y < n * y

-- (which is the desired contradiction)

have : ↑n * y > ↑n * y, by

calc ↑n * y > (c/y) * y

: by exact (mul_lt_mul_right y_pos).mpr

n_big

... >- c

: by finish

... >- ↑n * y

: by {apply (le_div_iff’ _).mp

(x_le_c_over_n n n_pos),

exact nat.cast_pos.mpr n_pos},

show false,

by linarith,

end,

show y = 0,

by exact le_antisymm y_leq_0 y_geq_0, -- or: finish

end,

show x = 0,

by {dsimp only[y] at y_is_0,

exact abs_eq_zero.mp y_is_0},

end

2.4 The Real Zero 41

The suffixes .mp and .mpr extract the implications from left to right and
from right left, respectively, from equivalences.

A much weaker version of the same criterion Let us consider the following
version of the vanishing criterion from Proposition 2.4.1:

lemma zero_via_1_over_n’

(x : real)

(c : real)

(x_le_c_over_n : ∀ n : nat, abs x <- c / (n : real))

: x = 0

:=

The only difference with lemma zero_via_1_over_n above is that we re-
quire the estimate for all natural numbers and not only for the positive ones.
This statement can be proved by the same strategy as before.

begin

let y : real := abs x,

have y_is_0 : y = 0, from

begin

have y_geq_0 : y >- 0,

by apply abs_nonneg,

have y_leq_0 : y <- 0, by

calc y = |x| : by refl

... <- c/0 : by exact x_le_c_over_n 0

... = 0 : by ring, -- !!

show y = 0,

by exact le_antisymm y_leq_0 y_geq_0,

end,

show x = 0,

by {dsimp only[y] at y_is_0,

exact abs_eq_zero.mp y_is_0},

end

However, the proof is now suspiciously simple: The key estimate (show-
ing that the absolute value is non-positive) is shorter and neither uses the
Archimedean property nor an argument by contradiction.

What happened? Looking at the proof, we use that c/0 = 0. This conven-
tion on arithmetic operations in Lean is not what we expect from the usual
conventions on division by 0 (if allowed at all). Thus, the hypothesis on abs

x in fact already contains the assumption that abs x <- 0. Therefore, the
statement is trivially true and not particularly useful.

42 2 Basic Examples

In conclusion, we see that it is important to watch out for corner cases,
especially in arithmetic operations. It is good practice to test out statements
on examples or in proofs of more involved statements.

2.4.3 Lean with Limits

Alternatively, instead of using the Archimedean property directly, we can also
prove the criterion from Proposition 2.4.1 through limits.

Source code 2.4.3. This is zero.lean of the git repo [47].

lemma zero_via_1_over_n_usinglimits

(x : real)

(c : real)

(x_le_c_over_n : ∀ n : nat, n > 0

→ abs x <- c / (n : real))

: x = 0

:=

The proof follows the same overall strategy as in Section 2.4.2.

begin

let y : real := abs x,

have y_is_0 : y = 0, from

begin

have y_geq_0 : y >- 0,

by apply abs_nonneg,

It remains to show y ≤ 0. The idea is to use that limn→∞ c/n = 0 holds
for all real numbers c (which in turn is a consequence of the Archimedean
property of the reals) and the fact that limits respect the ordering: If (an)n∈N
is a convergent sequence of real numbers and y is a real number that satisfies

for almost all n ∈ N, we have y ≤ an,

then y ≤ limn→∞ an. In combination, this will yield |x| ≤ 0.
Limits of real numbers in Lean are an instance of a rather general Bourbaki-

style concept: limits along filters [11]. More precisely, filter.tendsto takes
three arguments:

• The function, whose convergence is considered; in our case, this is the
function n 7−→ c/n.

• The underlying filter with respect to which convergence is considered;
in our case, this is the filter filter.at_top consisting of all cofinite
subsets of N.

2.4 The Real Zero 43

• The filter that describes the “limit” of the convergence; in our case,
this is the filter nhds 0 of all open neighbourhoods around 0.

Thus, filter.tendsto (λ n : nat, c/↑n) filter.at_top (nhds 0) ex-
presses that limn→∞ c/n = 0. If one works a lot with limits, it is helpful to
establish shorthand notation for such limits.

have y_leq_0 : y <- 0, from

begin

have lim_c_over_n_eq_0 :

filter.tendsto (λ n : nat, c/↑n)
filter.at_top (nhds 0),

by exact tendsto_const_div_at_top_nhds_0_nat c,

We feed this limit into the compatiblity with the ordering of reals. We first
establish that y ≤ c/n holds for almost all n ∈ N, namely for all n ∈ N≥1.
We can then apply ge_of_tendsto.

have y_leq_c_over_almost_all_n :

∀f n : nat in filter.at_top, y <- c/n, from

begin

have y_leq_c_over_ngeq1:

∃ a : nat, ∀ n : nat, n >- a → y <- c / n,

by {use 1, apply x_le_c_over_n},

exact filter.eventually_at_top.mpr y_leq_c_over_ngeq1,

end,

show _,

by exact ge_of_tendsto lim_c_over_n_eq_0

y_leq_c_over_almost_all_n,

end,

show y = 0,

by exact le_antisymm y_leq_0 y_geq_0,

end,

show x = 0,

by {dsimp only[y] at y_is_0,

exact abs_eq_zero.mp y_is_0},

end

This completes the formalisation of a second proof of Proposition 2.4.1.

44 2 Basic Examples

2.E Exercises

Exercise 2.E.1 (the identity map). Show that the identity map is bijective.

1. Give a pen-and-paper proof of this statement.

2. Formalise this statement and its proof in Lean. The identity map (on
the type X) is given by:

def id_map

(X : Type*)

: X → X

:= λ x, x

Source files [47]: maps_exercise.lean, maps_solution.lean

Exercise 2.E.2 (compositions of injective maps). Show the following statement:
The composition of injective maps is injective.

1. Give a pen-and-paper proof of this statement.

2. Formalise this statement and its proof in Lean.

Source files [47]: maps_exercise.lean, maps_solution.lean

Exercise 2.E.3 (formalising Example 2.1.7). Let X and Y be sets and let
f : X −→ Y be a map with the following property: There exist x, x′ ∈ X
with x 6= x′ and f(x) = f(x′). Show that then f is not injective.

1. Give a pen-and-paper proof of this statement.

2. Formalise this statement and its proof in Lean.

3. Use this to give a proof of lemma not_inj_f.

Source files [47]: maps_exercise.lean, maps_solution.lean

Exercise 2.E.4 (formalising Example 2.1.8).

1. Show that the map g from Example 2.1.8 satisfies g ◦ g = id{1,2}. How
can this be used to show that g is bijective?

2. Formalise this argument in Lean to give an alternative proof of lemma
bij_g.

Source files [47]: maps_exercise.lean, maps_solution.lean

Exercise 2.E.5 (injectivity/surjectivity in the core libraries).

1. Where in the Lean core libraries are injectivity and surjectivity treated?

2. Which statements on injectivity/surjectivity are provided?

3. How human-readable are the proofs?

2.E Exercises 45

Exercise 2.E.6 (the sum of the first natural numbers).

1. Define a Lean function first_nat_sum that formalises the map

s : N 7−→ N

n 7−→ 2 ·
n∑
j=0

j.

2. Give a pen-and-paper proof that s(n) = n · (n+ 1) for all n ∈ N.

3. Formalise this statement/proof in Lean.

Hints. It might be easier not to use the
∑

-functionality.
Source files [47]: induction_exercise.lean, induction_solution.lean

Exercise 2.E.7 (powers in groups). Let G be a group, let a, b ∈ G, and n ∈ N.

1. Pen-and-paper: Prove that (a · b · a−1)n = a · bn · a−1.

2. Formalise this statement/proof in Lean.

3. Pen-and-paper: Prove that bn · a = a · bn if a · b = b · a.

4. Formalise this statement/proof in Lean.

Hints. Lean and its tactics can be pedantic about associativity in groups.
When in doubt, add extra steps that spell out such transformations.
Source files [47]: induction_exercise.lean, induction_solution.lean

Exercise 2.E.8 (general sums and inductive computation). We consider the
lemma sum_range_induction from algebra.big_operators.basic.

1. Pen-and-paper: What does this lemma say?

2. Pen-and-paper: How would you prove this lemma?

3. Pen-and-paper: How could you use it to show
∑n−1
j=0 1 = n for all n ∈ N?

4. How is sum_range_induction proved in the Lean library?

Exercise 2.E.9 (cyclic groups).

1. Recall a pen-and-paper definition of cyclic groups.

2. Find a definition of cyclic groups in mathlib.

3. Translate this Lean-definition into a pen-and-paper definition.

4. Compare these two definitions!

5. Which statements on cyclic groups are proved in the corresponding
Lean library?

46 2 Basic Examples

Exercise 2.E.10 (an estimate). Let x, y ∈ R.

1. Pen-and-paper: Prove that x2 + 2 · x+ y2 − 2 · y + 2024 ≥ 2022.

2. Formalise this statement/proof in Lean.

Source files [47]: squares_exercise.lean, squares_solution.lean

Exercise 2.E.11 (two points in a square). Let a ∈ R≥0. If x and y lie in the
square [0, a]2 of side length a, then the Euclidean distance between x and y
is at most

√
2 · a.

1. Pen-and-paper: Prove this statement.

2. Formalise this statement/proof in Lean.

Hints. It might help to first consider the case of intervals instead of squares.
Source files [47]: squares_exercise.lean, squares_solution.lean

Exercise 2.E.12 (limits and sums). We consider the formula

“ lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn”

for sequences (an)n∈N and (bn)n∈N of real numbers.

1. Pen-and-paper: Under which hypotheses does this formula hold?

2. Find a suitable statement in the mathlib to prove this statement.

3. Pen-and-paper: Give examples for which this formula does not hold.

3

Design Choices

Formalising mathematical concepts involves structures and properties and
usually these components are intertwined. When modelling such concepts in
a proof assistant one is faced with a number of design decisions.

Some of these design decisions also appear in pen-and-paper mathematics.
However, in a proof assistant these choices become more apparent and more
pronounced.

Typical design options are, for example, the choice between types and sets,
the trade-off between structures and properties, the description/construction
of examples, and the question of how explicit and evaluable the setup should
be.

We illustrate a basic design process at the example of simplicial complexes.

Overview of this chapter.

3.1 Recurring Design Options 48
3.2 Simplicial Complexes 50
3.3 Simplicial Maps 56
3.4 Finite Simplicial Complexes 65
3.5 Generating Simplicial Complexes 70
3.6 Combining Simplicial Complexes 76
3.7 The Euler Characteristic 81
3.8 Towards a Library 87
3.E Exercises 90

48 3 Design Choices

3.1 Recurring Design Options

3.1.1 Types and Sets

Traditionally, mathematical objects are constructed in terms of set theory.
The key property of sets is extensional equality; i.e., two sets are equal if
and only if they contain the same elements. For example, a group is a tuple,
consisting of a set (the carrier) and maps and properties on this set. However,
for groups, equality of carrier sets is not a relevant concept; a more meaningful
way to compare groups is to compare the full structure of groups and pass
to the notion of isomorphism.

Lean is based on dependent type theory. On top of types, Lean offers typed
sets, including basic notation and operations on them. Such typed sets over
a base type A are modelled as functions A → Prop; i.e., sets are described
through selection predicates on the base type, which define membership in
the given set. Lean sets satisfy extensional equality (set.ext in data.set.

basic). Elements of Lean sets can be viewed as pairs, consisting of a member
of the base type and a proof that this member satisfies the defining selection
predicate of the set. In particular, handling elements of sets comes at the
price of also handling these membership proofs.

Therefore, it is more straightforward and more elegant in Lean to formalise
notions in terms of types instead of sets. Sets should only be used in those
situations in which the set properties are essential.

For example, when formalising the notion of a group, it is beneficial to
formalise the carrier of the group as a type instead of as a set. An example of
a formalisation of a mathematical concept that builds on Lean sets is given
in Section 3.2.

3.1.2 Structures and Properties

In pen-and-paper mathematics, it is common to extract distinguished maps
or elements out of defining existence properties. For example, many versions
of the definition of groups contain the axiom that for every element there
exists an inverse element. Usually, this is followed by a proof of uniqueness of
inverses (using a neutral element and associativity); subsequently, one defines
the map · −1 from the carrier of the group to itself that maps each element
to its unique inverse. Alternatively, one could make the inversion map part of
the structure of a group and formulate the axiom of inverses in terms of this
map. Similarly, and even more fundamentally, there is the choice of whether

3.1 Recurring Design Options 49

the neutral element of the group is part of the structure or whether only its
existence is required by the axioms.

In pen-and-paper mathematics, usually, such choices have no actual conse-
quences as it is straightforward to translate between them. Strictly speaking,
these choices are relevant and in a more constructive setting, such choices
might have an effect. Implicit transitions between structures and properties
are difficult in proof assistants. Moreover, in most situations, structures can
be handled with less overhead than properties. Therefore, in general, prefer-
ence should be given to structures.

Many mathematical concepts are organised in hierarchies (e.g., algebraic
structures). Modelling hierarchies appropriately can make the formalisation
slicker and more robust.

3.1.3 Restrictive Types and Cutting Corners

The dependent type theory underlying Lean allows us to express restricted
domains of operations. On the one hand, this gives fine-grained control and a
faithful translation of usual conventions. On the other hand, when applying
such operations, such restricted domains lead to proof obligations. In con-
trast, keeping unrestricted domains leads to simple function types, but shifts
the proof obligations to, e.g., theorems on properties of these functions.

For example, we would expect the type of division on the real num-
bers real to be Π (x : real), Π (y : real), y 6= 0 → real. But, in
fact, division on the field real in mathlib has the type real→ real → real

and uses the convention that division by 0 always leads to 0 (which differs
from the usual mathematical conventions!). Cutting corners in this way can
lead to misunderstandings, e.g., as in zero_via_1_over_n’ on p. 41, or worse.
We will therefore use restricted domains whenever necessary and will refrain
from introducing non-standard default cases.

3.1.4 Constructing Examples and Evaluation

Testing and applying theories in concrete examples is a core discipline in
mathematics. On the one hand, one purpose of theories is to solve concrete
problems. On the other hand, concrete examples form a basic test whether
the theory is sound. During formalisation, examples also can give evidence
as to whether the formalised theory reflects its pen-and-paper counterpart
well enough. Ideally, formalising examples in a proof assistant also leads to
executable code and thus provides the opportunity to run experiments.

A point-free style as promoted by the language of category theory simplifies
the formalisation of concepts, theorems, and proofs. In contrast, handling
concrete examples in such a framework can become difficult as the burden
of proof is shifted to the construction of objects. Part of the formalisation

50 3 Design Choices

process should be finding a good balance between slick formalisation and
accessibility of examples.

3.2 Simplicial Complexes

We illustrate a basic design process at the example of simplicial complexes.
Simplicial complexes are a higher-dimensional version of graphs [55]. The
combinatorial flavour of simplicial complexes makes the theory well-suited
for applications of algebraic topology to other fields [21, 24, 29].

We will focus on design choices and thus stick with a very basic setup.
Mathematically, our goal is to formalise the notion of simplicial complexes,
simplicial maps, and the Euler characteristic. And examples. In addition, we
will aim at a framework that allows for Lean computations in examples.

3.2.1 Pen-and-Paper

We begin with an informal description of the concept of simplicial complexes
(Figure 3.1). We first take a step back and quickly recall graphs: A graph
consists of vertices and edges between vertices. In the simple, loop-free, un-
oriented setting, edges can be modelled as two-element sets of vertices.

0 1 2

3 4 5

Edges:

{0, 1}, {0, 3}, {0, 4},
{1, 2}, {1, 3},
{2, 5}

0 1 2

3 4 5

Simplices:

∅
{0}, {1}, {2}, {3}, {4}, {5}
{0, 1}, {0, 3}, {1, 2}, {1, 3}, {1, 4}, {2, 5}, {3, 4}
{1, 3, 4}

Figure 3.1: A graph and a simplicial complex, schematically

Similarly, a simplicial complex is a set of simplices. These simplices are
combinatorial versions of vertices, edges, triangles, tetrahedra, . . . , i.e., of
the standard simplices

∆n := convex hull of {e0, . . . , en} ⊂ Rn+1.

3.2 Simplicial Complexes 51

The combinatorics of a simplicial complex is mainly driven by knowing which
vertices span a common simplex. Therefore, simplices are modelled by finite
sets, which should be thought of as the set of vertices of the corresponding
simplex. As faces of geometric simplices geometrically also are simplices, each
subset of such a finite set should also appear as a simplex of the simplicial
complex.

A minimalistic definition of simplicial complexes is thus:

Definition 3.2.1 (simplicial complex). A simplicial complex is a set X of finite
sets that is closed under taking subsets:

∀σ∈X ∀τ τ ⊂ σ =⇒ τ ∈ X.

The elements of X are called simplices of X.

Definition 3.2.2 (the set of vertices). Let X be a simplicial complex. The set
of vertices of X is defined as

⋃
X = {x | ∃σ∈Xx ∈ σ}. The elements of

⋃
X

are called vertices of X.

At this point, we already made a design choice: The set of “vertices” of the
simplicial complex is left implicit in the definition. In the literature, several
versions of the notion of (abstract) simplicial complexes are in use. For ex-
ample, some authors define simplicial complexes as a pair (V, S), consisting
of a set V and a set S of finite subsets of V that is closed under taking sub-
sets. In addition, it is sometimes required that S contains all singletons {x}
with x ∈ V .

Moreover, another choice involves the role of the empty set: Some authors
do not require closure under taking all subsets, but only under taking all
non-empty subsets.

Example 3.2.3 (empty). The empty set is a simplicial complex, the empty
simplicial complex.

Example 3.2.4 (standard simplex). If V is a finite set, then the power set P (V)
of V is a simplicial complex, the simplex spanned by V .

For n ∈ N, we call ∆(n) := P ({0, . . . , n}) the standard n-simplex. This
simplicial complex ∆(n) can be viewed as a combinatorial model of the affine
simplex ∆n.

Example 3.2.5 (the line). The set{
{n, n+ 1}

∣∣ n ∈ Z
}
∪
{
{n}

∣∣ n ∈ Z
}
∪ {∅}

is a simplicial complex. It can be viewed as a combinatorial model of the real
line.

Further examples will be considered in Section 3.5 and Section 3.6.
Affine simplices in Euclidean spaces have a canonical notion of dimension.

The dimension can be expressed in terms of the number of (affinely indepen-
dent) vertices. This leads to the notion of dimension of simplicial complexes.

52 3 Design Choices

Definition 3.2.6 (dimension of a simplex). Let X be a simplicial complex and
let σ ∈ X. The dimension of σ is defined as

dimσ := |σ| − 1 ∈ N ∪ {−1}.

Here, |σ| denotes the cardinality of σ.

Definition 3.2.7 (dimension of a simplicial complex). Let X be a simplicial
complex and let n ∈ N. The simplicial complex X has dimension n if the
following conditions are satisfied:

• for all σ ∈ X, we have dimσ ≤ n; and

• there exists a σ ∈ X with dimσ ≥ n.

Proposition 3.2.8 (dimension of the standard simplex). Let n ∈ N. Then, ∆(n)
has dimension n.

Proof. We first prove the upper bound: Let σ ∈ ∆(n) = P ({0, . . . , n}); i.e.,
σ is a subset of {0, . . . , n}. Therefore, we obtain

dimσ = |σ| − 1 ≤
∣∣{0, . . . , n}∣∣− 1 = n+ 1− 1 = n.

We now show the lower bound: The set σ := {0, . . . , n} is a simplex of ∆(n)
and satisfies

dimσ =
∣∣{0, . . . , n}∣∣− 1 = n+ 1− 1 ≥ n.

Therefore, ∆(n) has dimension n.

3.2.2 Lean

We implement the material on simplicial complexes from Section 3.2.1.

Source code 3.2.9. This is simplicial_complex.lean of the git repo [47].

When formalising the notion of simplicial complex from Definition 3.2.1,
we need to decide how to model sets (of sets), the finiteness property, and
the closure property.

In the definition of simplicial complexes, extensionality of sets plays an
important role, both for the overall set of simplices and for the individual
simplices. Therefore, it is natural to formalise simplicial complexes as sets of
sets. Because sets in Lean are typed sets, we need to specify a base type. This
step is an example of a types-and-sets choice (Section 3.1.1).

For the finiteness property, there are two canonical options: On the one
hand, we could formalise a simplicial complex as a set S of sets such that
the following holds: For each σ ∈ S, the set σ is finite. On the other hand,
we could formalise a simplicial complex as a set of finite-sets, where “finite-
sets” are a type of sets (over the given base type) with a built-in finiteness

3.2 Simplicial Complexes 53

guarantee. We will choose the latter option, using Lean’s finset types. This
step is an example of a structures-and-properties choice (Section 3.1.2).

import tactic -- standard proof tactics

import data.set -- basics on sets

import data.set.finite -- basics on finite sets

import data.finset -- type-level finite sets

open classical -- we work in classical logic

The closure property can be formalised in a straightforward manner. An-
ticipating that we will need to reason with and about this closure property
in a modular way, we give it a separate definition:

@[simp]

def is_subset_closed

{a : Type*}

(S : set (finset a))

:= ∀ s ∈ S, ∀ t, t ⊆ s → t ∈ S

In order to unclutter notation later on, we make the base type argument a
in is_subset_closed implicit.

Simplicial complexes are then formalised as records, consisting of two
fields: a set of finset over a base type and (a proof of) the closure property:

structure simplicial_complex (a : Type*)

:= mk :: (simplices : set (finset a))

(subset_closed : is_subset_closed simplices)

In this setting, we also formalise the set of vertices:

def vertices

{a : Type*}

(X : simplicial_complex a)

: set a

:= { x : a | ∃ s ∈ X.simplices, x ∈ s }

Basic examples In order to formalise the empty simplicial complex and the
standard simplex, we need to provide proofs of is_subset_closed in the
corresponding situations. As these situations are simple enough, basic Lean
tactics can provide such proofs.

def empty_sc

{a : Type*}

: (simplicial_complex a)

:= simplicial_complex.mk

(∅ : finset (finset a))

(by tauto)

54 3 Design Choices

@[simp]

def simplex

{a : Type*}

(V : finset a)

: (simplicial_complex a)

:= simplicial_complex.mk

(finset.powerset V)

(by {unfold_coes, simp, tauto})

@[simp]

def std_simplex

(n : N)
: (simplicial_complex N)

:= simplex (finset.range (n+1))

The “real line” from Example 3.2.5 is formalised in Exercise 3.E.5.

Dimension Finally, we formalise the notion of dimension of simplices and
simplicial complexes.

@[simp]

def dim

{a : Type*}

(s : finset a)

: int

:= finset.card s - 1

We can evaluate dim on simplices:

#eval dim (finset.range 5) -- 4

#eval dim (finset.range 0) -- -1

Definition 3.2.7 is already stated in a formalisation-friendly way. It might
have seemed more natural to define the dimension of a simplicial complex as
the “maximum” of dimensions of all simplices in the given simplicial complex.
However, such a maximum might not exist (because the set of simplices could
be empty or contain simplices of arbitrarily large dimension). In pen-and-
paper mathematics, we usually ignore this problem and handle it implicitly.
In a formalisation, it is safer to keep such corner cases explicit. Therefore, we
chose the formulation in Definition 3.2.7 that only defines when a simplicial
complex has a given number as dimension.

@[simp]

def has_dimension_leq

{a : Type*}

(X : simplicial_complex a)

(n : N)
:= ∀ s ∈ X.simplices, dim s <- n

3.2 Simplicial Complexes 55

@[simp]

def has_dimension_geq

{a : Type*}

(X : simplicial_complex a)

(n : N)
:= ∃ s ∈ X.simplices, dim s >- n

@[simp]

def has_dimension

{a : Type*}

(X : simplicial_complex a)

(n : N)
:= has_dimension_leq X n

∧ has_dimension_geq X n

Proposition 3.2.8 and its proof are straightforward to formalise:

lemma dim_std_simplex

(n : N)
: has_dimension (std_simplex n) n

:=

begin

let Dn := std_simplex n,

have dim_leq_n : has_dimension_leq Dn n, from

begin

assume s : finset nat,

assume s_in_Dn : s ∈ Dn.simplices,

have s_sub_n : s ⊆ finset.range (n+1),

by exact finset.mem_powerset.mp s_in_Dn,

have card_s_leq_n1 : finset.card s <- n + 1, from

begin

calc finset.card s <- finset.card (finset.range (n+1))

: by exact finset.card_le_of_subset

s_sub_n

... <- n + 1

: by finish,

end,

show dim s <- n, from

begin

calc dim s = finset.card s - 1 : by simp only [dim]

... <- n + 1 - 1 : by linarith

56 3 Design Choices

... <- n : by linarith,

end,

end,

have dim_geq_n : has_dimension_geq Dn n, from

begin

let s := finset.range (n+1), -- {0,...,n}

use s,

have s_in_Dn : s ∈ (std_simplex n).simplices,

by simp,

have dim_s : dim s >- n,

by finish,

show _, by exact 〈s_in_Dn, dim_s〉,
end,

show _, by exact 〈dim_leq_n, dim_geq_n〉,
end

In a similar way, one can show that the (infinite) simplicial complex from
Example 3.2.5 has dimension 1 (Exercise 3.E.5).

3.3 Simplicial Maps

Every theory comes with morphisms between their objects. Simplicial maps
are structure-preserving maps between simplicial complexes.

3.3.1 Pen-and-Paper

A simplicial map between simplicial complexes is a map between the sets of
vertices that maps simplices to simplices:

Definition 3.3.1 (simplicial map). Let X and Y be simplicial complexes. A
simplicial map X −→ Y is a map f :

⋃
X −→

⋃
Y with

∀σ∈X f(σ) ∈ Y.

Here, “f(σ)” denotes the image of the finite set σ under f , i.e., {f(x) | x ∈ σ}.

In this definition of simplicial maps, the dimensions of the simplices are
not necessarily preserved: Simplices can be mapped to simplices of smaller
dimension (but not to simplices of larger dimension).

3.3 Simplicial Maps 57

Proposition 3.3.2. Let X and Y be simplicial complex, let f : X −→ Y be a
simplicial map, and let σ ∈ X. Then

dim f(σ) ≤ dimσ.

Proof. We have

dim f(σ) =
∣∣f(σ)

∣∣− 1 (definiiton of dim)

≤ |σ| − 1 (monotonicity of | · | under direct images)

= dimσ, (definition of dim)

as claimed.

Basic examples for simplicial maps are the identity map and compositions
of simplicial maps.

Example 3.3.3 (identity map). Let X be a simplicial complex. Then, clearly,
the identity map id⋃

X :
⋃
X −→

⋃
X on the set of vertices of X is a sim-

plicial map. This simplicial map X −→ X is also denoted by idX .

Proposition 3.3.4 (composition of simplicial maps). Let X, Y , Z be simplicial
complexes and let f : X −→ Y , g : Y −→ Z be simplicial maps. Then the
composition

h := g ◦ f :
⋃
X −→

⋃
Z

of the underlying maps f :
⋃
X −→

⋃
Y and g :

⋃
Y −→

⋃
Z (by abuse of

notation denoted by the same letters) is a simplicial map X −→ Z.

Proof. Let σ ∈ X. Then

h(σ) = (g ◦ f)(σ) = g
(
f(σ)

)
.

As f is simplicial, we have f(σ) ∈ Y . Because g is simplicial, we thus ob-
tain h(σ) = g(f(σ)) ∈ Z.

In fact, simplicial complexes and simplicial maps form a category (Exer-
cise 3.E.6). In particular, we obtain a notion of simplicial isomorphism. We
spell out the definition of isomorphisms explicitly:

Definition 3.3.5 (simplicial isomorphism). Let X and Y be simplicial com-
plexes.

• A simplicial map f : X −→ Y is a simplicial isomorphism if there exists
a simplicial map g : Y −→ X such that g ◦ f = idX and f ◦ g = idY .

• We call X and Y isomorphic if there exists a simplicial isomor-
phism X −→ Y .

Another basic example of simplicial maps are constant maps.

58 3 Design Choices

Example 3.3.6 (constant maps). Let X and Y be simplicial complexes and
let y be a vertex of Y . Then the constant map

f :
⋃
X −→

⋃
Y

x 7−→ y

is a simplicial map.
But, wait, aren’t we forgetting something? We have to prove that these

constant maps indeed are simplicial maps. This can be done in the following
steps:

• As y is a vertex of Y , the singleton {y} is a simplex of Y :

Because y is a vertex of Y , there exists a simplex τ ∈ Y with y ∈ τ .
Therefore, {y} ⊂ τ . As Y closed under taking subsets, also {y} ∈ Y .

• If σ ∈ X, then f(σ) ⊂ {y}, by definition of f as constant map at y and
direct images.

Because {y} ∈ Y and because Y is closed under taking subsets, we
obtain also f(σ) ∈ Y .

Thus, f is simplicial.

3.3.2 Lean

We implement the material on simplicial maps from Section 3.3.1.

Source code 3.3.7. This is simplicial_map.lean of the git repo [47].

We begin with imports, including simplicial_complex.lean.

import tactic -- standard proof tactics

import data.set -- basics on sets

import data.set.finite -- basics on finite sets

import data.finset -- type-level finite sets

import simplicial_complex -- basics on simplicial complexes

open classical -- we work in classical logic

Simplicial maps are defined as maps between the sets of vertices. Modelling
this directly in Lean would be cumbersome. We therefore, take a slightly dif-
ferent approach: A simplicial map is a function between the underlying base
types that maps simplices to simplices. Strictly speaking, this is not the same
as Definition 3.3.1. However, for all practical purposes, this formalisation is
close enough. This is an example for maps of a types-and-sets choice (Sec-
tion 3.1.1).

As in the case of simplicial complexes, we first define the core property
separately and then package the map and a proof that the map satisfies the
property into a record:

3.3 Simplicial Maps 59

@[simp]

def is_simplicial_map

{a : Type*} {b : Type*} [decidable_eq b]

(X : simplicial_complex a)

(Y : simplicial_complex b)

(f : a → b)

:= ∀ s, s ∈ X.simplices → finset.image f s ∈ Y.simplices

structure simplicial_map

{a : Type*} {b : Type*} [decidable_eq b]

(X : simplicial_complex a)

(Y : simplicial_complex b)

:= mk :: (map : a → b)

(is_simplicial : is_simplicial_map X Y map)

The image of a finset under a map again is a finset, provided that the
target type has a decidable equality relation. This requirement is necessary
in view of the constructive nature of finset.

structure simplicial_map

{a : Type*} {b : Type*} [decidable_eq b]

(X : simplicial_complex a)

(Y : simplicial_complex b)

:= mk :: (map : a → b)

(is_simplicial : is_simplicial_map X Y map)

Simplicial maps on vertices Before continuing with the material from Sec-
tion 3.3.1, we perform an intermediate step, which is related to the discrep-
ancy between the original definition and the formalisation: We show that
simplicial maps as in simplicial_map indeed map vertices to vertices.

As a preparation, we show that singletons of vertices are simplices (as in
Example 3.3.6) and that elements of singleton simplices are vertices:

lemma vertex_to_singleton

{a : Type*}

(X : simplicial_complex a)

(x : a)

(x_in_X : x ∈ vertices X)

: {x} ∈ X.simplices

:=

begin

-- As x is a vertex, x is contained in a simplex s of X.

-- Therefore, {x} ⊆ s.

rcases x_in_X with 〈 s, 〈 s_in_SX, x_in_s〉 〉,
have x_sub_s : {x} ⊆ s,

by finish,

60 3 Design Choices

-- As the set of simplices of X is closed under subsets,

-- also {x} is a simplex of X.

exact X.subset_closed s s_in_SX {x} x_sub_s,

end

lemma singleton_to_vertex

{a : Type*}

(X : simplicial_complex a)

(x : a)

(x_in_SX : {x} ∈ X.simplices)

: x ∈ vertices X

:=

begin

-- {x} witnesses that x is contained in a simplex

-- and thus is a vertex

simp only[vertices, set.mem_def, set.mem_set_of_eq],

use {x},

finish,

end

lemma simplicial_map_on_vertices

{a : Type*} {b : Type*} [decidable_eq b]

(X : simplicial_complex a)

(Y : simplicial_complex b)

(f : simplicial_map X Y)

(x : a)

(x_in_X : x ∈ vertices X)

: f.map x ∈ vertices Y

:=

begin

simp only[vertices, set.mem_def, set.mem_set_of_eq],

-- We use t := {f(x)} as a witness.

let t : finset b := {f.map x},

use t,

-- Thus, we need to show that t is a simplex of Y

have t_in_SY : t ∈ Y.simplices, from

begin

have x_in_SX : {x} ∈ X.simplices,

by exact vertex_to_singleton X x x_in_X,

have fx_is_t : finset.image f.map {x} = t,

by finish,

have fx_in_SY : finset.image f.map {x} ∈ Y.simplices,

by exact (f.is_simplicial {x} x_in_SX),

3.3 Simplicial Maps 61

finish,

end,

-- ... and that f(x) ∈ t.

have y_in_t : f.map x ∈ t,

by finish,

show _, by finish,

end

Dimension monotonicity We continue as in Section 3.3.1 with the dimension
monotonicity of simplicial maps.

lemma simplicial_map_dim_mono

{a : Type*} {b : Type*} [decidable_eq b]

(X : simplicial_complex a)

(Y : simplicial_complex b)

(f : simplicial_map X Y)

(s : finset a)

(s_in_SX : s ∈ X.simplices)

: dim (finset.image f.map s) <- dim s

:=

begin

calc dim (finset.image f.map s)

= finset.card (finset.image f.map s) - 1

: by unfold dim

... <- finset.card s - 1

: by simp[finset.card_image_le]

... <- dim s

: by unfold dim,

end

Examples Finally, we formalise the examples from Section 3.3.1 and the no-
tion of simplicial isomorphism in a straightforward way. We begin with the
identity map.

lemma id_is_simplicial_map

{a : Type*} [decidable_eq a]

(X : simplicial_complex a)

: is_simplicial_map X X (λ x : a, x)

:=

begin

simp,

end

62 3 Design Choices

def id_simplicial_map

{a : Type*} [decidable_eq a]

(X : simplicial_complex a)

: (simplicial_map X X)

:= simplicial_map.mk

(λ x : a, x)

(id_is_simplicial_map X)

To show that constant maps are simplicial, we proceed as in Example 3.3.6,
making use of vertex_to_singleton.

lemma const_is_simplicial

{a : Type*} {b : Type*} [decidable_eq b]

(X : simplicial_complex a)

(Y : simplicial_complex b)

(y_0 : b)

(y0_vertex : y_0 ∈ vertices Y)

: is_simplicial_map X Y (λ x : a, y_0)

:=

begin

-- As y_0 is a vertex of Y, the set {y_0} is a simplex of Y

have y0_in_SY : {y_0} ∈ Y.simplices,

by exact vertex_to_singleton Y y_0 y0_vertex,

-- Setup for the main argument

assume s : finset a,

assume s_in_SX : s ∈ X.simplices,

let f := λ x : a, y_0,

let fs := finset.image f s,

-- We have f(s) ⊆ {y_0}

have fs_sub_y0 : fs ⊆ {y_0}, from

begin

assume y,

assume y_in_fs : y ∈ fs,

finish,

end,

-- and thus f(s) is a simplex of Y.

have fs_in_SY : fs ∈ Y.simplices,

by exact Y.subset_closed {y_0} y0_in_SY fs fs_sub_y0,

show _, by finish,

end

3.3 Simplicial Maps 63

def const_simplicial_map

{a : Type*} {b : Type*} [decidable_eq b]

(X : simplicial_complex a)

(Y : simplicial_complex b)

(y_0 : b)

(y0_vertex : y_0 ∈ vertices Y)

: (simplicial_map X Y)

:= simplicial_map.mk

(λ x : a, y_0)

(const_is_simplicial X Y y_0 y0_vertex)

Also, for compositions and isomorphisms, we translate the pen-and-paper
versions quite directly:

lemma is_simplicial_comp

{a : Type*} {b : Type*} {c : Type*}

[decidable_eq b] [decidable_eq c]

{X : simplicial_complex a}

{Y : simplicial_complex b}

{Z : simplicial_complex c}

(f : a → b)

(f_simpl : is_simplicial_map X Y f)

(g : b → c)

(g_simpl : is_simplicial_map Y Z g)

: is_simplicial_map X Z (g ◦ f)

:=

begin

assume s : finset a,

assume s_in_SX : s ∈ X.simplices,

let t : finset b := finset.image f s,

have t_in_SY : t ∈ Y.simplices,

by {apply (f_simpl s), apply s_in_SX}, -- or: tauto,

have gfs_in_SZ : finset.image g t ∈ Z.simplices,

by {apply (g_simpl t), apply t_in_SY},

show finset.image (g ◦ f) s ∈ Z.simplices,

by calc finset.image (g ◦ f) s

= finset.image g (finset.image f s)

: by exact finset.image_image.symm

... = finset.image g t

: by refl

... ∈ Z.simplices

: by exact gfs_in_SZ,

end

64 3 Design Choices

def simplicial_map.comp

{a : Type*} {b : Type*} {c : Type*}

[decidable_eq b] [decidable_eq c]

{X : simplicial_complex a}

{Y : simplicial_complex b}

{Z : simplicial_complex c}

(f : simplicial_map X Y)

(g : simplicial_map Y Z)

: (simplicial_map X Z)

:= simplicial_map.mk

(g.map ◦ f.map)

(is_simplicial_comp f.map f.is_simplicial

g.map g.is_simplicial)

@[simp]

def is_inverse_simplicial_iso

{a : Type*} {b : Type*} [decidable_eq a] [decidable_eq b]

{X : simplicial_complex a}

{Y : simplicial_complex b}

(f : simplicial_map X Y)

(g : simplicial_map Y X)

:= simplicial_map.comp f g = id_simplicial_map X

∧ simplicial_map.comp g f = id_simplicial_map Y

@[simp]

def is_simplicial_iso

{a : Type*} {b : Type*} [decidable_eq a] [decidable_eq b]

{X : simplicial_complex a}

{Y : simplicial_complex b}

(f : simplicial_map X Y)

:= ∃ g : simplicial_map Y X, is_inverse_simplicial_iso f g

-- For example, the identity map is a simplicial isomorphism

-- because it is its own inverse

lemma id_is_simplicial_iso

{a : Type*} [decidable_eq a]

(X : simplicial_complex a)

: is_simplicial_iso (id_simplicial_map X)

:=

begin

use id_simplicial_map X,

finish,

end

3.4 Finite Simplicial Complexes 65

3.4 Finite Simplicial Complexes

So far, we only have a small collection of examples of simplicial complexes.
There are two elementary ways to construct more simplicial complexes:

• by specifying a set of simplices and closing up (Section 3.5);

• by combining simplicial complexes (Section 3.6, Exercise 3.E.17).

In principle, all of this could be done for general simplicial complexes. How-
ever, in view of later applications and computations, we will focus on the case
of finite simplicial complexes. Therefore, we will first digress to introduce fi-
nite simplicial complexes. This is an example of an examples-and-evaluation
choice (Section 3.1.4).

3.4.1 Pen-and-Paper

A simplicial complex is finite if it has only finitely many simplices; this is
equivalent to finiteness of the set of vertices.

Definition 3.4.1 (finite simplicial complex). A simplicial complex X is finite
if the set X is finite.

Proposition 3.4.2 (finiteness of simplicial complexes). Let X be a simplicial
complex. Then the following are equivalent:

1. The simplicial complex X is finite in the sense of Definition 3.4.1.

2. The set
⋃
X of vertices of X is finite.

Proof. Let X be finite. We show that
⋃
X is finite: Because each element

of X is a finite set,
⋃
X is a finite union of finite sets and thus finite.

Conversely, let
⋃
X be finite. Then X is finite: The set X is a subset of the

power set P (
⋃
X). With

⋃
X also P (

⋃
X) is finite. Therefore, the subset X

of the finite set P (
⋃
X) is also finite.

3.4.2 Lean

We implement the material on finite simplicial complexes from Section 3.4.1.

Source code 3.4.3. This is fin_simplicial_complex.lean of the git repo [47].

66 3 Design Choices

import tactic -- standard proof tactics

import data.set -- basics on sets

import data.set.finite -- basics on finite sets

import data.finset -- type-level finite sets

import simplicial_complex -- basics on simplicial complexes

open classical -- we work in classical logic

Finiteness of simplicial complexes We first formalise the definition of finite-
ness of simplicial complexes and the characterisation in terms of finiteness of
the vertex set. In Lean, finiteness of sets can be encoded by the set.finite

property.

def is_finite_simplicial_complex

{a : Type*}

(X : simplicial_complex a)

:= set.finite (X.simplices)

For the proof of the different characterisations of finiteness of simplicial
complexes (Proposition 3.4.2), we follow the pen-and-paper arguments. We
have to carefully handle the transition between set and finset. Therefore,
the proofs look bulkier than in the pen-and-paper case.

lemma fin_simplices_fin_vertices

{a : Type*}

(X : simplicial_complex a)

(X_fin_S : is_finite_simplicial_complex X)

: set.finite (vertices X)

:=

begin

let S := X.simplices,

let V := vertices X,

-- Because S is finite,

-- also V (as finite union of finsets) is finite

let S’ := { (↑s : set a) | s ∈ S },

let U := set.sUnion S’,

have U_finite : set.finite U, from

begin

-- finite unions of finite sets are finite

apply set.finite.sUnion,

-- the set S’ is finite because S is finite

show set.finite S’,

by {simp only[S’, bex_def],

apply set.finite.image (λs, ↑s) (by assumption)},

3.4 Finite Simplicial Complexes 67

-- all elements of S’ are finite sets

show ∀ (t : set a), t ∈ S’ → t.finite, from

begin

assume t : set a,

assume t_in_S’ : t ∈ S’,

dsimp only[S’] at t_in_S’,

rcases t_in_S’ with 〈s, 〈s_in_S, t_is_s〉〉,
have s_finite : set.finite ↑s,

by exact finset.finite_to_set s,

induction t_is_s,

assumption,

end,

end,

have V_sub_U : V ⊆ U, from

begin

assume x,

assume x_in_V : x ∈ V,

dsimp only[V, vertices] at x_in_V,

finish,

end,

show set.finite V,

by exact set.finite.subset U_finite V_sub_U,

end

lemma fin_vertices_fin_simplices

{a : Type*}

(X : simplicial_complex a)

(X_fin_V : set.finite (vertices X))

: is_finite_simplicial_complex X

:=

begin

-- S is finite,

-- because S is a subset of the powerset of vertices X,

-- which is finite (as powerset of a finite set)

let S : set (finset a) := X.simplices,

let PV := finset.powerset (set.finite.to_finset X_fin_V),

have S_sub_PV : S ⊆ PV, from

begin

assume s,

assume s_in_S : s ∈ S,

68 3 Design Choices

show s ∈ PV, from

begin

simp only[finset.mem_powerset],

assume x,

assume x_in_s : x ∈ s,

show x ∈ X_fin_V.to_finset,

by {apply set.mem_to_finset.mpr, unfold vertices,

use s, exact 〈 s_in_S, x_in_s 〉},
end,

end,

have PV_finite : set.finite ↑PV,
by exact finset.finite_to_set PV,

show set.finite S,

by exact set.finite.subset PV_finite S_sub_PV,

end

Finite simplicial complexes However, in terms of computability, we did not
yet gain an advantage: The property set.finite is not computable and
does not give a way to handle finite simplicial complexes in a better way
than general ones.

Therefore, we make another types-and-sets choice and introduce a version
of simplicial complexes with a built-in finiteness guarantee for the set of
simplices: Instead of taking a set (finset a) as set of simplices, we restrict
ourselves to finset (finset a):

structure fin_simplicial_complex (a : Type*)

:= mk :: (simplices : finset (finset a))

(subset_closed : is_subset_closed

(simplices : set (finset a)))

In the pen-and-paper version, we can implicitly switch between finite and
general simplicial complexes. In Lean, we have to make conversion explicit,
because different types are involved.

As every finset can be coerced into a set, it is straightforward to view
a fin_simplicial_complex as a simplicial_complex.

def to_sc

{a : Type*}

(X : fin_simplicial_complex a)

: simplicial_complex a

:= simplicial_complex.mk

(↑X.simplices)
(X.subset_closed)

3.4 Finite Simplicial Complexes 69

In order to enable Lean’s automatic coercion through the type class in-
ference mechanism, we also provide a corresponding instance of the type
class has_coe.

instance {a : Type*}

: has_coe (fin_simplicial_complex a) (simplicial_complex a)

:= { coe := to_sc }

Moreover, we show that this conversion is compatible with our notion
is_finite_simplicial_complex of finiteness of simplicial complexes.

lemma fin_sc_is_finite

{a : Type*}

(X : fin_simplicial_complex a)

: is_finite_simplicial_complex (↑X : simplicial_complex a)

:=

begin

exact finset.finite_to_set X.simplices,

end

Conversely, finite simplicial complexes can be converted to the ones in
the sense of fin_simplicial_complex. However, as the conversion from fi-
nite sets to finset is non-computable, this conversion is not well-suited for
computations.

noncomputable

def to_fin_sc

{a : Type*}

(X : simplicial_complex a)

(fin_X : is_finite_simplicial_complex X)

: fin_simplicial_complex a

:=

begin

let SX : set (finset a) := X.simplices,

have fin_SX : set.finite SX, by assumption,

let S : finset (finset a)

:= set.finite.to_finset fin_SX, -- non-computable!

-- The finset S is closed under taking subsets,

-- because this holds for the set of simplices of X

have sub_S : is_subset_closed (↑S : set (finset a)), from

begin

assume s : finset a,

assume s_in_S : s ∈ S,

have s_in_SX : s ∈ X.simplices, by finish,

assume t : finset a,

70 3 Design Choices

assume t_sub_s : t ⊆ s,

show t ∈ S,

by simp[X.subset_closed s s_in_SX t t_sub_s],

end,

-- We now have all the finiteness/subset guarantees

-- to build the desired finite simplicial complex:

exact fin_simplicial_complex.mk S sub_S,

end

3.5 Generating Simplicial Complexes

We can generate a simplicial complex by specifying a set of finite sets and
then taking the set of all subsets of these sets.

As indicated in Section 3.4, we will restrict to the case of finite simplicial
complexes. These can be generated in this way from a finite set of finite sets.

Thus, we can easily specify standard examples of simplicial complexes that
model the cylinder, the Möbius strip, the torus, spheres, . . .

3.5.1 Pen-and-Paper

Definition 3.5.1 (generated simplicial complex). Let S be a finite set of finite
sets. We then write

〈S〉 :=
{
τ
∣∣ ∃σ∈S τ ⊂ σ

}
for the simplicial complex generated by S.

Implicit in this definition is the observation that 〈S〉 indeed is a simplicial
complex. Moreover, this simplicial 〈S〉 complex is finite.

Example 3.5.2 (cylinder). A cylinder can be obtained from a rectangle by
identifying one pair of opposite sides (in the same direction). This is illus-
trated in Figure 3.2; the vertical sides are glued. Subdividing the rectangle
into sufficiently many triangles and respecting the glueing condition on the
vertical sides, leads to a finite simplicial complex that models the cylinder:〈

{0, 1, 4}, {0, 3, 4}, {1, 2, 5}, {1, 4, 5}, {2, 3, 0}, {2, 5, 3}
〉

A subdivision into four triangles would not be sufficient: any three vertices
can span at most one 2-simplex (extensionality of sets!). Therefore, in order
to avoid a “collapse” of the structure, we need to introduce more simplices.

3.5 Generating Simplicial Complexes 71

0 1 2

3 4 5

0

3

0 1 2

3 4 5

3

0

Figure 3.2: A cylinder and a Möbius strip; the outer vertical edges describe
the same edge, but the direction of identification differs between
the cylinder and the Möbius strip.

5

4

5

4

5

4

5

4

0 0
1 2 3

Figure 3.3: An octahedron

Example 3.5.3 (Möbius strip). Similarly, to the cylinder, the Möbius strip is
obtained from a rectangle by identifying one pair of opposite sides in the
opposite direction. This is illustrated in Figure 3.2 and can be modelled by
the following finite simplicial complex:〈

{0, 1, 4}, {0, 3, 4}, {1, 2, 5}, {1, 4, 5}, {2, 3, 0}, {2, 5, 0}
〉

Example 3.5.4 (octahedron). The (hollow) octahedron already comes with
an obvious simplicial structure (Figure 3.3) and thus can be modelled by the
following finite simplicial complex:〈
{0, 1, 5}, {0, 1, 4}, {1, 2, 5}, {1, 2, 4}, {2, 3, 5}, {2, 3, 4}, {3, 0, 5}, {3, 0, 4}

〉
Example 3.5.5 (torus). The torus is obtained from a square by glueing oppo-
site sides (in the same direction). This is illustrated in Figure 3.4. Subdividing
the square into sufficiently many triangles and respecting the glueing condi-
tion on the sides, leads to a finite simplicial complex that models the torus:

72 3 Design Choices

0 1 2 0

3
4 5

3

6
7 8

6

0 1 2 0

Figure 3.4: A torus

〈
{0, 1, 4}, {0, 3, 4}, {1, 2, 5}, {1, 4, 5}, {2, 0, 3}, {2, 5, 3},
{3, 4, 7}, {3, 6, 7}, {4, 5, 8}, {4, 7, 8}, {5, 3, 6}, {5, 8, 6},
{6, 7, 1}, {6, 0, 1}, {7, 8, 2}, {7, 1, 2}, {8, 6, 0}, {8, 2, 0}

〉
Example 3.5.6 (Klein bottle). Similarly, the Klein bottle is obtained from
a square by glueing opposite sides, one pair in the same direction and one
pair in the opposite direction (Figure 3.5). Thus, a finite simplicial complex
modelling the Klein bottle is, for instance:〈

{0, 1, 4}, {0, 3, 4}, {1, 2, 5}, {1, 4, 5}, {2, 0, 6}, {2, 5, 6},
{3, 4, 7}, {3, 6, 7}, {4, 5, 8}, {4, 7, 8}, {5, 3, 6}, {5, 8, 3},
{6, 7, 1}, {6, 0, 1}, {7, 8, 2}, {7, 1, 2}, {8, 3, 0}, {8, 2, 0}

〉

0 1 2 0

3
4 5

6

6
7 8

3

0 1 2 0

0 1 2 3

4
5

6
7

7
8 9

4

3 2 1 0

Figure 3.5: A Klein bottle and a projective plane

3.5 Generating Simplicial Complexes 73

Example 3.5.7 (projective plane). The projective plane is obtained from a
square by glueing the sides as indicated in Figure 3.5. In order to avoid the
unintentional identification of triangles, we need to be a bit careful and flip
the triangles in the “lower right corner” (otherwise, we would get {2, 3, 7}
“twice”). The corresponding finite simplicial complex is:〈

{0, 1, 5}, {0, 4, 5}, {1, 2, 6}, {1, 5, 6}, {2, 3, 6}, {3, 6, 7},
{4, 5, 8}, {4, 7, 8}, {5, 6, 9}, {5, 8, 9}, {6, 7, 4}, {6, 4, 9},
{7, 8, 2}, {7, 3, 2}, {8, 9, 1}, {8, 2, 1}, {9, 4, 0}, {9, 1, 0}

〉
Example 3.5.8 (simplicial sphere). Let n ∈ N. Then, the simplicial sphere of
dimension n is the finite simplicial complex generated by all proper faces of
the standard (n+ 1)-simplex:〈

P ({0, . . . , n+ 1}) \ {0, . . . , n+ 1}
〉

Geometrically, this corresponds to a hollow standard simplex and thus to a
sphere.

3.5.2 Lean

We implement the material on the generation of simplicial complexes from
Section 3.5.1.

Source code 3.5.9. This is gen_simplicial_complex.lean of the git repo [47].

import tactic -- standard proof tactics

import data.set -- basics on sets

import data.set.finite -- basics on finite sets

import data.finset -- type-level finite sets

import data.finset.slice

import simplicial_complex -- basics on simplicial complexes

import fin_simplicial_complex -- basics on finite complexes

open classical -- we work in classical logic

This is a straightforward translation with one small exception: In contrast
to the pen-and-paper situation, we cannot skip over the detail that generated
simplicial complexes indeed are simplicial complexes. The proof of finiteness
of the resulting simplicial complex is hidden in the fact that the union bUnion

and the powerset finset.powerset operate on finset and thus their imple-
mentation already contains the necessary finiteness proofs.

@[simp]

def fingen_simplices

{a : Type*} [decidable_eq a]

74 3 Design Choices

(S : finset (finset a))

: finset (finset a)

:= S.bUnion (λ x, finset.powerset x)

-- this set is indeed closed under subsets

lemma fingen_simplices_sub_closed

{a : Type*} [decidable_eq a]

(S : finset (finset a))

: is_subset_closed (↑(fingen_simplices S) : set (finset a))

:=

begin

assume s : finset a,

assume s_in_gS: s ∈ fingen_simplices S,

assume t : finset a,

assume t_sub_s : t ⊆ s,

show t ∈ ↑(fingen_simplices S), from

begin

simp only[fingen_simplices, finset.mem_coe,

finset.mem_bUnion, finset.mem_powerset] at *,

rcases s_in_gS with 〈 s’ : finset a, 〈 s’_in_S, s_sub_s’〉〉,

-- We use s’ as witness that t lies in fingen_simplices S

use s’,

show _, by exact 〈 s’_in_S, by tauto 〉,
end,

end

def fingen_simplicial_complex

{a : Type*} [decidable_eq a]

(S : finset (finset a))

: fin_simplicial_complex a

:= fin_simplicial_complex.mk

(fingen_simplices S)

(fingen_simplices_sub_closed S)

Examples Finally, we reach the stage at which our choice to integrate built-
in finiteness guarantees pays off: We can let Lean perform computations on
our finitely generated examples. For instance, we can compute the set of all
vertices, the set of all simplices, or the set of all simplices of a given (non-
negative) dimension.

def simplices_of_dim

{a : Type*} -- [decidable_eq a]

(X : fin_simplicial_complex a)

3.5 Generating Simplicial Complexes 75

(n : nat)

: finset (finset a)

:= X.simplices.slice (n+1)

We generate the examples as in Section 3.5.1 by specifying a finite gener-
ating set of simplices.

def cylinder

: fin_simplicial_complex nat

:= fingen_simplicial_complex

{ {0,1,4}, {0,3,4}, {1,2,5}, {1,4,5}, {2,3,0}, {2,5,3} }

#eval cylinder.simplices

/- {{0, 1, 4}, {0, 1}, {0, 2, 3}, {0, 2}, {0, 3, 4}, {0, 3},

{0, 4}, {0}, {1, 2, 5}, {1, 2}, {1, 4, 5}, {1, 4}, {1, 5},

{1}, {2, 3, 5}, {2, 3}, {2, 5}, {2}, {3, 4}, {3, 5}, {3},

{4, 5}, {4}, {5}, {}}

-/

#eval simplices_of_dim cylinder 0

-- {{0}, {1}, {2}, {3}, {4}, {5}}

#eval simplices_of_dim cylinder 1 -- ...

#eval simplices_of_dim cylinder 2 -- ...

#eval simplices_of_dim cylinder 3 -- {}

def moebius

: fin_simplicial_complex nat

:= fingen_simplicial_complex

({ {0,1,4}, {0,3,4}, {1,2,5}, {1,4,5}, {2,3,0}, {2,5,0} })

def octahedron

: fin_simplicial_complex nat

:= fingen_simplicial_complex

({ {0,1,5}, {0,1,4}

, {1,2,5}, {1,2,4}

, {2,3,5}, {2,3,4}

, {3,0,5}, {3,0,4} })

def torus

: fin_simplicial_complex nat

:= fingen_simplicial_complex

{ {0,1,4}, {0,3,4}, {1,2,5}, {1,4,5}, {2,0,3}, {2,5,3}

, {3,4,7}, {3,6,7}, {4,5,8}, {4,7,8}, {5,3,6}, {5,8,6}

, {6,7,1}, {6,0,1}, {7,8,2}, {7,1,2}, {8,6,0}, {8,2,0} }

#eval torus.simplices

76 3 Design Choices

#eval simplices_of_dim torus 0

#eval simplices_of_dim torus 1

#eval simplices_of_dim torus 2

def klein_bottle

: fin_simplicial_complex nat

:= fingen_simplicial_complex

{ {0,1,4}, {0,3,4}, {1,2,5}, {1,4,5}, {2,0,6}, {2,5,6}

, {3,4,7}, {3,6,7}, {4,5,8}, {4,7,8}, {5,3,6}, {5,8,3}

, {6,7,1}, {6,0,1}, {7,8,2}, {7,1,2}, {8,3,0}, {8,2,0} }

def projective_plane

: fin_simplicial_complex nat

:= fingen_simplicial_complex

{ {0,1,5}, {0,4,5}, {1,2,6}, {1,5,6}, {2,3,6}, {3,6,7}

, {4,5,8}, {4,7,8}, {5,6,9}, {5,8,9}, {6,7,4}, {6,4,9}

, {7,8,2}, {7,3,2}, {8,9,1}, {8,2,1}, {9,4,0}, {9,1,0} }

#eval finset.card (simplices_of_dim projective_plane 2) -- 18

def sphere

(n : nat)

: fin_simplicial_complex nat

:= fingen_simplicial_complex

(finset.ssubsets (finset.range (n+2)))

#eval (sphere 0).simplices -- {{0}, {1}, {}}

#eval (sphere 1).simplices -- ...

#eval (sphere 2).simplices -- ...

#eval simplices_of_dim (sphere 3) 3

-- {{0, 1, 2, 3}, {0, 1, 2, 4}, {0, 1, 3, 4},

-- {0, 2, 3, 4}, {1, 2, 3, 4}}

However, we cannot let Lean directly compute the dimension of finite sim-
plicial complexes: We defined the dimension in an indirect way.

3.6 Combining Simplicial Complexes

We can generate new simplicial complexes from existing simplicial complexes
through combinators. There are many interesting such combinators such as
products, joins, suspensions, subdivisions, . . . For the sake of brevity and
simplicity, we only consider two basic examples: Unions and intersections of
two simplicial complexes. Wedges are introduced in Exercise 3.E.17.

3.6 Combining Simplicial Complexes 77

Again, we restrict to the case of finite simplicial complexes so that we
retain the benefit of evaluability.

3.6.1 Pen-and-Paper

The union and intersection of two finite simplicial complexes is literally de-
fined by the union and intersection, respectively.

Definition 3.6.1 (union of simplicial complexes). Let X and Y be finite simpli-
cial complexes. The union of X and Y is the finite simplicial complex X ∪Y .

Definition 3.6.2 (intersection of simplicial complexes). Let X and Y be finite
simplicial complexes. The intersection of X and Y is the finite simplicial
complex X ∩ Y .

Both definitions come with the obligation of proving that the results indeed
are simplicial complexes and finite:

Proposition 3.6.3. Let X and Y be finite simplicial complexes.

1. The set X ∪ Y is closed under taking subsets.

2. The set X ∩ Y is closed under taking subsets.

3. The sets X ∪ Y and X ∩ Y are finite.

Proof. Ad 1. Let σ ∈ X ∪ Y and let τ ⊂ σ. We show that τ ∈ X ∪ Y : We
distinguish two cases:

• If σ ∈ X, then τ ∈ X, because X is closed under taking subsets.
Therefore, τ ∈ X ∪ Y .

• If σ ∈ Y , then we can argue in the same way.

Ad 2. Let σ ∈ X ∩ Y and let τ ⊂ σ. We show that τ ∈ X ∩ Y : We have
σ ∈ X and σ ∈ Y . Because X and Y are closed under taking subsets, we
obtain τ ∈ X and τ ∈ Y . Thus, τ ∈ X ∩ Y .

Ad 3. BecauseX and Y are finite sets also their union and their intersection
is finite.

Example 3.6.4 (zigzag). The finite simplicial complexes Zn with n ∈ N
sketched in Figure 3.6 can be defined inductively via the union combinator:

• We define Z0 as the finite simplicial complex generated by the single-
ton {(0, 0)}.

78 3 Design Choices

. . .

(0, 0) (1, 0) (2, 0)

(0, 1) (1, 1)

(n, 0) (n+ 1, 0)

(n, 1)

Zn
zn

Figure 3.6: The zigzag complex from Example 3.6.4, schematically

• For n ∈ N, we write

zn :=
〈
{(n, 0), (n+ 1, 0)}, {(n, 0), (n, 1)}, {(n, 1), (n+ 1, 0)}

〉
and then define inductively

Zn+1 := Zn ∪ zn.

3.6.2 Lean

We implement the material on unions and intersections of finite simplicial
complexes from Section 3.6.1.

Source code 3.6.5. This is comb_simplicial_complex.lean of the git repo [47].

import tactic -- standard proof tactics

import data.set -- basics on sets

import data.set.finite -- basics on finite sets

import data.finset -- type-level finite sets

import simplicial_complex -- basics on simplicial complexes

import gen_simplicial_complex -- generation of finite complexes

open classical -- we work in classical logic

Because finset supports the union and intersection of two finset entities
over the same base type, the formalisation is straightforward:

lemma union_is_subset_closed

{a : Type*} [decidable_eq a]

(S : finset (finset a))

(T : finset (finset a))

(S_sub_closed : is_subset_closed (S : set (finset a)))

(T_sub_closed : is_subset_closed (T : set (finset a)))

: is_subset_closed (↑(S ∪ T) : set (finset a))

3.6 Combining Simplicial Complexes 79

:=

begin

assume s,

assume s_in_ST : s ∈ ↑(S ∪ T),

assume t,

assume t_sub_s : t ⊆ s,

simp only [is_subset_closed, finset.mem_coe] at *,

have case_s_in_S : s ∈ S → t ∈ S ∪ T, from

begin

assume s_in_S: s ∈ S,

have t_in_S : t ∈ S,

by exact S_sub_closed s s_in_S t t_sub_s,

show _, by finish,

-- or: exact or.inl (S_sub_closed s s_in_S t t_sub_s),

end,

have case_s_in_T : s ∈ T → t ∈ S ∪ T, from

begin

assume s_in_T : s ∈ T,

have t_in_T : t ∈ T,

by exact T_sub_closed s s_in_T t t_sub_s,

show _, by finish,

end,

show _,

by {simp only[finset.mem_union] at s_in_ST,

exact or.elim s_in_ST case_s_in_S case_s_in_T},

end

def union_sc

{a : Type*} [decidable_eq a]

(X : fin_simplicial_complex a)

(Y : fin_simplicial_complex a)

: fin_simplicial_complex a

:= fin_simplicial_complex.mk

(X.simplices ∪ Y.simplices)

(by exact union_is_subset_closed X.simplices Y.simplices

X.subset_closed Y.subset_closed)

Alternatively, we could have implemented union_sc as the finite simplicial
complex generated by the union of simplices. This would simplify the defini-
tion, but might make reasoning with this definition more complicated. In a
completionist treatment of the topic, both description should be available.

80 3 Design Choices

lemma inter_is_subset_closed

{a : Type*} [decidable_eq a]

(S : finset (finset a))

(T : finset (finset a))

(S_sub_closed : is_subset_closed (S : set (finset a)))

(T_sub_closed : is_subset_closed (T : set (finset a)))

: is_subset_closed (↑(S ∩ T) : set (finset a))

:=

begin

assume s,

assume s_in_ST : s ∈ ↑(S ∩ T),

assume t,

assume t_sub_s : t ⊆ s,

simp only [is_subset_closed, finset.mem_coe] at *,

have t_in_S : t ∈ S, from

begin

have s_in_S : s ∈ S, by finish,

show t ∈ S, by exact S_sub_closed s s_in_S t t_sub_s,

end,

have t_in_T : t ∈ T, from

begin

have s_in_T : s ∈ T, by finish,

show t ∈ T, by exact T_sub_closed s s_in_T t t_sub_s,

end,

show _,

by {simp only[finset.mem_inter],

exact and.intro t_in_S t_in_T},

end

def inter_sc

{a : Type*} [decidable_eq a]

(X : fin_simplicial_complex a)

(Y : fin_simplicial_complex a)

: fin_simplicial_complex a

:= fin_simplicial_complex.mk

(X.simplices ∩ Y.simplices)

(by exact inter_is_subset_closed X.simplices Y.simplices

X.subset_closed Y.subset_closed)

The zigzag complex As an example of the union combinator, we formalise
the construction of the zigzag complex from Example 3.6.4.

3.7 The Euler Characteristic 81

def zig

(n : nat)

: fin_simplicial_complex (int × int)

:= fingen_simplicial_complex

{ {(n,0), (n+1,0)}, {(n,0), (n,1)}, {(n,1), (n+1,0)} }

def zigzag

: nat → fin_simplicial_complex (int × int)

| 0 := fingen_simplicial_complex { {(0,0)} }

| (nat.succ n) := union_sc (zigzag n) (zig n)

3.7 The Euler Characteristic

The Euler characteristic is one of the first invariants of algebraic topology
and can be computed directly from simplicial structures.

3.7.1 Pen-and-Paper

The Euler characteristic of a finite simplicial complex is the alternating sum
of the number of simplices in the given dimension.

Definition 3.7.1 (Euler characteristic). Let X be a finite simplicial complex.
The Euler characteristic of X is defined by

χ(X) :=
∑
n∈N

(−1)n ·
∣∣{σ ∈ X | dimσ = n}

∣∣ ∈ Z.

As X is finite, this sum only has finitely many non-zero summands and
thus gives a well-defined integer. Moreover, the Euler characteristic has the
following alternative description:

Proposition 3.7.2 (Euler characteristic, reorganisation). Let X be a finite sim-
plicial complex. Then

χ(X) =
∑
σ∈X

p(dimσ),

where p is the truncated parity function:

p : Z −→ Z

n 7−→

0 if n < 0

1 if n ≥ 0 is even

−1 if n ≥ 0 is odd

82 3 Design Choices

Proof. The claim follows by reordering the terms of the (finite) sums: In both
descriptions, each non-empty simplex σ contributes (−1)dimσ.

The only subtle point is that the empty simplex contributes 0 in both
sums. In the definition of χ(X) this is ensured by only taking simplices of
non-negative dimension into account; in the alternative description, this is
contained in the definition of p.

Example 3.7.3 (Euler characteristic). Careful counting shows the following:

• The cylinder has Euler characteristic 6− 12 + 6 = 0.

• The Möbius strip has Euler characteristic 6− 12 + 6 = 0.

• The octahedron has Euler characteristic 6− 12 + 8 = 2.

• The torus has Euler characteristic 9− 27 + 18 = 0.

• The Klein bottle has Euler characteristic 9− 27 + 18 = 0.

• The projective plane has Euler characteristic 10− 27 + 18 = 1.

• The simplicial spheres have Euler characteristic

2 in dimension 0
3− 3 = 0 in dimension 1

4− 6 + 4 = 2 in dimension 2
5− 10 + 10− 5 = 0 in dimension 3.

A key property of the Euler characteristic is additivity:

Proposition 3.7.4 (Euler characteristic of unions). Let X and Y be finite sim-
plicial complexes. Then

χ(X ∪ Y) = χ(X) + χ(Y)− χ(X ∩ Y).

Proof. We use the description of the Euler characteristic from Proposi-
tion 3.7.2. The claimed additivity formula for the Euler charcteristic is then
a consequence of the usual inclusion-exclusion principle for finite sums: We
have

χ(X ∪ Y) =
∑

σ∈X∪Y
p(dimσ) (Proposition 3.7.2)

=
∑
σ∈X

p(dimσ) +
∑
σ∈Y

p(dimσ)

−
∑

σ∈X∩Y
p(dimσ) (inclusion/exclusion principle)

= χ(X) + χ(Y)− χ(X ∩ Y) (Proposition 3.7.2),

as claimed.

3.7 The Euler Characteristic 83

Proposition 3.7.5 (Euler characteristic of zigzags). Let n ∈ N. For the simpli-
cial complex Zn from Example 3.6.4, we have

χ(Zn) = 1− n.

Proof. We proceed by induction over n:

• Base case. For n = 0, the simplicial complex Zn = Z0 is a single point.
We obtain

χ(Z0) = 1 = 1− n,

as claimed.

• Induction hypothesis. Let m ∈ N. We assume that the claim is proved
for m, i.e., χ(Zm) = 1−m.

• Induction step. We show that the claim then also holds for m + 1. To
this end, we calculate

χ(Zm+1) = χ(Zm ∪ zm) (by definition of Zm+1)

= χ(Zm) + χ(zm)− χ(Zm ∩ zm) (Proposition 3.7.4)

= 1−m+ χ(zm)− χ(Zm ∩ zm). (by the induction hypothesis)

Because zm is isomorphic to the simplicial sphere of dimension 1 and
because the Euler characteristic is invariant under simplicial isomor-
phisms, we obtain χ(zm) = 0.

Moreover, Zm ∩ zm = {{(m, 0)}, ∅} and so χ(Zm ∩ zm) = 1.

In combination, we obtain

χ(Zm+1) = 1−m+ 0− 1 = 1− (m+ 1),

as claimed.

3.7.2 Lean

We implement the material on the Euler characteristic of finite simplicial
complexes from Section 3.7.1.

Source code 3.7.6. This is euler_characteristic.lean of the git repo [47].

import tactic -- standard proof tactics

import simplicial_complex

import gen_simplicial_complex

import comb_simplicial_complex

import algebra.big_operators.basic

import algebra.big_operators.order

84 3 Design Choices

open_locale big_operators -- to enable
∑

notation

open classical -- we work in classical logic

For the definition of the Euler characteristic, we use the description from
Proposition 3.7.2. The advantage of this description over the “original” defi-
nition from Definition 3.7.1 is that it does not incur any obligations to prove
finiteness of the sum. Also, the proof of additivity of the Euler characteristic
is most transparent in this description.

def parity

(x : int)

: int

:= if x < 0 then 0

else if int.mod x 2 = 0 then 1

else -1

#eval parity (-1) -- 0

#eval parity 0 -- 1

#eval parity 2022 -- 1

#eval parity 2023 -- -1

def euler_char

{a : Type*}

(X : fin_simplicial_complex a)

: int

:=
∑

(s : finset a) in X.simplices, parity (dim s)

To increase readability, we introduce the common notation for the Euler
characteristic:

notation ‘χ‘ := euler_char

Examples As we opted for a finite and explicit setup, we can let Lean compute
the Euler characteristic of concrete simplicial complexes:

#eval χ cylinder -- 0

#eval χ moebius -- 0

#eval χ octahedron -- 2

#eval χ torus -- 0

#eval χ klein_bottle -- 0

#eval χ projective_plane -- 1

#eval χ (sphere 0) -- 2

#eval χ (sphere 1) -- 0

#eval χ (sphere 2) -- 2

#eval χ (sphere 3) -- 0

#eval χ (sphere 4) -- 2

3.7 The Euler Characteristic 85

Such computations can easily be turned into statements that can be reused
in other places:

lemma euler_char_sphere_2

: χ (sphere 2) = 2

:=

begin

refl,

end

The Euler characteristic of unions The additivity of the Euler characteristic
follows directly from the inclusion/exclusion formula for sums over finsets.

theorem euler_char_union

{a : Type*} [decidable_eq a]

(X : fin_simplicial_complex a)

(Y : fin_simplicial_complex a)

: χ (union_sc X Y)

= χ X + χ Y - χ (inter_sc X Y)

:=

begin

calc χ (union_sc X Y)

=
∑

s in X.simplices ∪ Y.simplices, parity (dim s)

: by refl

... =
∑

s in X.simplices ∪ Y.simplices, parity (dim s)

+
∑

s in X.simplices ∩ Y.simplices, parity (dim s)

-
∑

s in X.simplices ∩ Y.simplices, parity (dim s)

: by ring

... =
∑

s in X.simplices, parity (dim s)

+
∑

s in Y.simplices, parity (dim s)

-
∑

s in X.simplices ∩ Y.simplices, parity (dim s)

: by simp[finset.sum_union_inter]

... = χ X + χ Y - χ (inter_sc X Y)

: by refl,

end

The Euler characteristic of zigzags The Euler characteristic of an individual
zigzag can be computed directly:

#eval χ (zigzag 0) -- 1

#eval χ (zigzag 1) -- 0

#eval χ (zigzag 2) -- -1

#eval χ (zigzag 3) -- -2

Finally, we indicate how we can inductively compute the Euler charac-
teristic of the zigzag complexes, following the same strategy as in Proposi-
tion 3.7.5. We only carry out the main steps; the missing proofs are provi-
sionally admitted through the tactic sorry.

86 3 Design Choices

lemma euler_char_zig

(n : nat)

: χ (zig n) = 0

:=

begin

sorry,

end

lemma euler_char_zigzag_inter

(n : nat)

: χ (inter_sc (zigzag n) (zig n)) = 1

:=

begin

let X := inter_sc (zigzag n) (zig n),

have inter_simplices : X.simplices = { {(n,0)}, ∅ }, from

begin

sorry,

end,

show χ X = 1,

by {simp only[euler_char, inter_simplices], finish},

end

lemma euler_char_zigzag

(n : nat)

: χ (zigzag n) = 1 - n

:=

begin

induction n with m ind_hyp,

-- base case: 0

case nat.zero : {refl},

-- induction step: m -> m + 1

case nat.succ :

begin

calc χ (zigzag (m+1))

= χ (zigzag m)

+ χ (zig m)

- χ (inter_sc (zigzag m) (zig m))

: by exact euler_char_union (zigzag m) (zig m)

... = 1 - m + 0 - 1

: by simp[ind_hyp,

euler_char_zig, euler_char_zigzag_inter]

3.8 Towards a Library 87

... = 1 - (m+1)

: by ring,

end

end

These proof outlines are an example of a prototyping process; we will
discuss such processes in more detail in Chapter 4. The gaps in the outlines
above are filled in Exercise 3.E.13, Exercise 3.E.14, and Exercise 3.E.16.

3.8 Towards a Library

The material covered in this chapter is a part of the basic theory of simplicial
complexes. Building on this formalisation, one could now introduce further
constructions of simplicial complexes, add the layer of geometric realisation,
proceed in the direction of simplicial homology, or connect the theory with
their point-free siblings: simplicial sets.

Providing basics as libraries unleashes the full power of proof assistants:
Others can build on previous work and thus contribute to the construction
of the formalisation palace.

On a technical level, providing a library in particular entails using state-of-
the-art source code deployment mechanisms (or direct contribution to math-
lib [42]), providing documentation [41], and adhering to some extent to nam-
ing conventions [3, 4].

In the following, we briefly outline several structural steps on the path
towards a library.

3.8.1 Interaction with Other Libraries

Good integration of new formalisation bits with existing libraries maximises
usability, applicability, and robustness.

For example, making simplicial complexes and simplicial maps as con-
sidered in this chapter an instance of the standard category framework of
mathlib, gives access to all standard notation and inheritance properties for
morphisms, isomorphisms, etc. Defining such an instance is the goal of Exer-
cise 3.E.6. In contrast, if we do not provide such an instance, then we would
need to reprove lots of basic properties, leading to extra work and introducing
more opportunities for omissions or confusion.

3.8.2 Completeness

Like good textbooks, libraries should aim at a level of completeness within a
well-defined area. In particular, this includes:

88 3 Design Choices

• Common equivalent characterisations of the notions under considera-
tion should be provided.

• Common inheritance properties should be provided.

• Typical arguments should be lemmas or tactics [6, Chapter 5].

• Standard examples should be provided.

These items should be interpreted both on the pen-and-paper level and on
the Lean level. The latter usually also leads to useful reformulations of results
that on pen-and-paper would be performed implicitly.

Whether a reasonable level of completeness is reached can (and should)
be tested by formalising example situations using the library.

For example, in mathlib, the library algebra.group on basic group theory
contains many elementary statements on manipulating terms and calculations
in groups and their interaction with group homomorphisms. Many of these
elementary statements only differ by simple transformations. Having these
statements readily available in different forms substantially increase usability.
Moreover, this library on group theory is complemented by the group tactic
in tactic.group, thereby further simplifying use of this library.

3.8.3 Substructures and Quotients

As a particular case of the quest for completeness, typically in libraries on
mathematical theories, the need for a treatment of substructures and quo-
tients arises.

In Lean, the formalisation of substructures often uses subtypes; for quo-
tients, some support for quotient types is provided [14, Section 2.7.1].

Substructures For example, subcomplexes of simplicial complexes are intro-
duced in Exercise 3.E.2. This is an atypical example of substructures: We
formalised simplicial complexes in terms of sets and therefore subcomplexes
can be directly formalised as simplicial complexes related by actual inclusion.

The formalisation of substructures of structures based on type classes over
carrier types usually involves an additional step:

• One first introduces a record consisting of a set over the original carrier
type and suitable closure properties for the original operations of the
structure on this set.

• One then shows that such substructures admit a canonical instance of
the original type class and that the “inclusion” defines a morphism in
the appropriate sense.

A concrete example of such substructures is the notion subgroup in the
mathlib, formalising subgroups.

3.8 Towards a Library 89

How is this related to subtypes? Lean subtypes of a type a are basically
modelled by predicates a → Prop. Similarly, sets over a basetype a are mod-
elled by predicates a → Prop. For substructures, often sets over the original
basetype are used.

Quotients Quotient types, in general, are a tricky subject in type the-
ory [15, 17]. Lean takes on a pragmatic approach and introduces quotient
types via an axiomatic description. These axioms provide “quotients” of a
type a by a binary relation a → a → Prop. The axioms for quotient types
are contained in the Lean core (init_quotient, which is called in core.lean)
and extended to the full quotient mechanism in init.data.quot and data

.quot. In particular, Lean includes the assumption of the soundness axiom
quot.sound.

In mathematics, one usually considers quotients by equivalence relations
(and not general binary relations). This case is taken care of by setoids: A
setoid is a pair, consisting of a set and an equivalence relation on this set. In
Lean, the setoid type class is provided in init.data.setoid. Quotients of
setoids are packaged into the quotient concept.

For example, the type real of real numbers in mathlib is constructed as
the Cauchy completion of the rationals. The Cauchy completion is a quotient
of the type of Cauchy sequences by the equivalence relation generated by zero
sequences. Quotient groups are defined in group_theory.coset as quotients
by the coset equivalence relation of a normal subgroup. In the simplicial
world, wedges of (pointed) simplicial complexes can be defined in terms of
quotient types (Exercise 3.E.17).

3.8.4 Generality

Libraries should provide a compromise between high-level abstraction mech-
anisms, which can be instantiated to further situations, and straightforward
applicability.

In the situation of simplicial complexes, one might wonder whether simpli-
cial sets would be a “better” framework. On the one hand, simplicial sets aim
at a more point-free description of simplicial phenomena, which leads to slick
formalisations. On the other hand, many concrete applications involve actual
finite simplicial complexes and thus it is desirable to also provide an accessible
framework for simplicial topology that can handle automatic computations.

For these notes, we decided in favour of concreteness and simplicial com-
plexes. A more completionist approach to the subject, of course, should also
spell out the relation with simplicial sets.

90 3 Design Choices

3.E Exercises

Source code. Solutions [47]: simplicial_solution.lean

General Simplicial Complexes

Exercise 3.E.1 (a small simplicial complex).

1. Pen-and-paper: Give an example of a simplicial complex that has ex-
actly two non-empty simplices.

2. Formalise this example in Lean, including a proof that this example has
the desired property.

Exercise 3.E.2 (subcomplexes).

1. Pen-and-paper: Introduce a notion of “subcomplexes” of simplicial com-
plexes such that the “inclusion of a subcomplex” is a simplicial map.

2. Formalise these notions/statements/proofs in Lean.

Exercise 3.E.3 (nerves). Let X be a set and let U ⊂ P (X) be a set of subsets.
The nerve of U is the simplicial complex{

V ⊂ U
∣∣ V is finite and

⋂
V 6= ∅

}
∪ {∅}.

Formalise this construction in Lean.

Exercise 3.E.4 (Rips complexes). Let (X, d) be a metric space. Given a ra-
dius r ∈ R≥0, the Rips complex of (X, d) of radius r is defined as

Rr(X, d) :=
{
σ ⊂ X

∣∣ σ is finite and ∀x,y∈σ d(x, y) ≤ r
}
.

1. Formalise this construction in Lean.

2. Pen-and-paper: Prove that Rr(X, d) is a subcomplex of Rs(X, d) for
all r, s ∈ R≥0 with r ≤ s. Subcomplexes are introduced in Exer-
cise 3.E.2.

3. Formalise this statement/proof in Lean.

Exercise 3.E.5 (the line).

1. Formalise the line from Example 3.2.5 in Lean.

2. Pen-and-paper: Prove that the line from Example 3.2.5 has dimension 1.

3. Formalise this statement/proof in Lean.

3.E Exercises 91

Exercise 3.E.6 (the category of simplicial complexes). Define an instance

instance {a : Type*} : category (simplicial_complex a)

for the type class category of category_theory.category.basic, using the
composition of simplicial maps defined Section 3.3.2.

Finite Simplicial Complexes and Generation

Exercise 3.E.7 (the cube). Formalise the surface of a cube as a finite simplicial
complex in Lean. It might be useful to first formalise squares and then to
construct a cube from six squares.

Exercise 3.E.8 (simplicial maps via generators). Let S be a finite set of finite
sets and let Y be a simplicial complex.

1. Pen-and-paper: State and prove a principle that allows to generate sim-
plicial maps 〈S〉 −→ Y from maps defined on S.

2. Formalise this statement/proof in Lean.

Exercise 3.E.9 (dimension of generated simplicial complexes).

1. Pen-and-paper: How can the dimension of a generated simplicial com-
plex be described in terms of dimensions of the given generating set?

2. Formalise this statement/proof in Lean.

3. Use this result to show in Lean that the torus has dimension 2.

Exercise 3.E.10 (vertices of unions and intersections). Let X and Y be finite
simplicial complexes.

1. Pen-and-paper: How can the sets of vertices of X ∪ Y and X ∩ Y be
computed from the sets of vertices of X and Y ?

Which of these two statements is more difficult to prove?

2. Formalise the set of vertices of finite simplicial complexes in Lean as a
finset.

3. Formalise the statements/proofs on the sets of vertices of unions and
intersections of finite simplicial complexes in Lean.

Exercise 3.E.11 (simplicial complexes with a single vertex).

1. Pen-and-paper: Show that a simplicial complex X that has exactly one
vertex x is of the form X = {{x}, ∅}.

2. Formalise this statement/proof in Lean for finite simplicial complexes,
using the finset of vertices of Exercise 3.E.10.

92 3 Design Choices

The Euler Characteristic

Exercise 3.E.12 (an estimate for the Euler characteristic). Let X be a finite
simplicial complex. Then

∣∣χ(X)
∣∣ ≤ |X|.

1. Pen-and-paper: Prove this statement.

2. Formalise this statement/proof in Lean. It might be useful to first prove
a corresponding claim for the function parity.

Exercise 3.E.13 (Euler characteristic and isomorphisms). Show that the Euler
characteristic of finite simplicial complexes is invariant under isomorphisms
of simplicial complexes:

1. Pen-and-paper: Show that simplicial isomorphisms between simplicial
complexes induce dimension-preserving bijections between the sets of
simplices.

2. Pen-and-paper: Conclude that isomorphic finite simplicial complexes
have the same Euler characteristic.

3. Formalise both statements and proofs in Lean.

Exercise 3.E.14 (the Euler characteristic of zig). Complete the computation
euler_char_zig of the Euler characteristic of the zig complexes in Sec-
tion 3.7.2, using the isomorphism invariance of the Euler characteristic (Ex-
ercise 3.E.13) and the Euler characteristic of zig 0.

Exercise 3.E.15 (vertices of zig and zigzag). We use the notation from Exam-
ple 3.6.4. Let n ∈ N and let k ∈ N with k + 1 < n.

1. Pen-and-paper: Show that⋃
zn ∩

⋃
zn+1 = {(n+ 1, 0)},

⋃
zk ∩

⋃
zn = ∅,⋃

Zk ∩
⋃
zn = ∅,

⋃
Zn ∩

⋃
zn = {(n, 0)}.

2. Formalise these statements/proofs in Lean, using the finset of vertices
from Exercise 3.E.10.

For the empty intersections, it might be helpful to first inductively
establish bounds on the first coordinate for vertices of the zig and zigzag
complexes.

Exercise 3.E.16 (the Euler characteristic of zigzags). Complete the compu-
tation euler_char_zigzag of the Euler characteristic of zigzags in Sec-
tion 3.7.2, using Exercise 3.E.14, Exercise 3.E.15, and Exercise 3.E.11.

3.E Exercises 93

The Wedge of Finite Simplicial Complexes

Exercise 3.E.17 (wedges of finite simplicial complexes). Let X and Y be sim-
plicial complexes and let x0 and y0 be vertices of X and Y , respectively.
Let

Z := (
⋃
X t

⋃
Y)/(x0 ∼ y0)

be the set obtained from the vertices of X and Y by “identifying x0 and y0”
and let iX :

⋃
X −→ Z and iY :

⋃
Y −→ Z be the canonical maps induced

by the inclusions of X and Y into the disjoint union. We consider the sets

iXX :=
{
iX(σ)

∣∣ σ ∈ X},
iY Y :=

{
iY (σ)

∣∣ σ ∈ Y }.
The wedge of X and Y with respect to x0 and y0 is the union com-
plex 〈iXX〉 ∪ 〈iY Y 〉. In fact, iXX and iY Y are already simplicial complexes,
but for simplicity, we will not prove this.

Formalise this construction in Lean for finite simplicial complexes:

1. Formalise the wedge relation “(x0 ∼ y0)”. It will pay off later to for-
malise it in such a way that one can easily prove that the wedge relation
is decidable and an equivalence relation.

2. Formalise the wedge type by using a quotient type of a suitable setoid;
disjoint union types can be modelled by sum types.

3. Formalise the generating sets iXX and iY Y . Here, decidability of the
wedge relation can be useful.

4. Formalise the construction of the wedge.

Exercise 3.E.18 (roses). Define a function rose in Lean that, given a natural
number n, returns the n-fold iterated wedge of zig 0 with itself with respect
to the basepoints induced by the vertex (0,0) of zig 0.

Geometrically, rose n can then be viewed as a “rose with n petals”. For
example, rose 3 has exactly seven vertices and exactly nine simplices of
dimension 1.
Hints. This is trickier than it looks: What is the type of rose ?!

94 3 Design Choices

4

Abstraction and Prototyping

We now move on to the formalisation of recent mathematical developments.
Depending on the mathematical field, different challenges might appear. Two
types of situations are particularly convenient for a direct formalisation:

• Theories and arguments that depend only on elementary notions or
notions that already have been implemented; such theories can be for-
malised in a straightforward way, as we have already seen in the classical
examplse treated in Chapter 2 and Chapter 3.

• Theories that are built on high-level abstraction mechanisms such as
categories and universal properties; such theories can be formalised di-
rectly in a declarative style. An example is given in Section 4.1.

Not all theories fall into one of these two types. In Section 4.2, we will ex-
plain how results can be formalised indirectly through a suitable intermediate
abstraction step. In this way, proof assistants encourage abstraction and em-
phasise the declarative perspective on mathematics.

Overview of this chapter.

4.1 Direct Formalisation: Functorial Semi-Norms 96
4.2 Indirect Formalisation: Amenable Multiplicity 110
4.E Exercises 134

96 4 Abstraction and Prototyping

4.1 Direct Formalisation: Functorial Semi-Norms

We give an example of a direct formalisation of a result that is already in
abstract formalisation-friendly form. The example is motivated by geometric
topology, but the abstracted version only requires a basic understanding of
category theory language.

4.1.1 Pen-and-Paper

Functorial semi-norms on general functors are a generalisation of the notion
of functorial semi-norms on singular (co)homology, originally introduced by
Gromov in the context of simplicial volume [26, 25]. For simplicity, we only
consider the case of finite homogeneous functorial semi-norms.

We will introduce the basic notions and prove the simple but fundamen-
tal observation that functorial semi-norms are trivial on so-called weakly
flexible classes [44, Proposition 3.1]; in particular, this shows that (finite ho-
mogeneous) functorial semi-norms on representable functors are trivial [44,
Corollary 4.1].

Definition 4.1.1 (semi-norm, homogeneous semi-norm). Let A be an Abelian
group. A semi-norm on A is a map | · | : A −→ R≥0 with the following
properties:

• We have |0| = 0.

• For all x ∈ A, we have | − x| = |x|.

• For all x, y ∈ A, we have |x+ y| ≤ |x|+ |y|.

A semi-norm | · | on A is homogeneous if the following condition is satisfied:
For all x ∈ A and all n ∈ Z, we have (where |n| denotes the standard absolute
value on Z)

|n · a| = |n| · |a|.

Let Ab denote the category of Abelian groups and group homomorphisms.
We write Absn for the category of all semi-normed Abelian groups and norm-
non-increasing group homomorphisms.

Definition 4.1.2 (functorial semi-norm). Let C be a category and let F : C −→
Ab be a functor. A functorial semi-norm on F is a factorisation func-
tor F̂ : C −→ Absn of F through the forgetful functor Absn −→ Ab

4.1 Direct Formalisation: Functorial Semi-Norms 97

Absn

forget
��

C
F
//

F̂

==

Ab

that is homogeneous on each object: For all X ∈ Ob(C), the semi-norm

on F̂ (X) is homogeneous.

More explicitly, a functorial semi-norm on a functor F : C −→ Ab consists
of a choice of a homogeneous semi-norm | · |F̂ on F (X) for every X ∈ Ob(C)
such that for all morphisms f : X −→ Y in C and all α ∈ F (X), we have∣∣F (f)(α)

∣∣
F̂
≤ |α|F̂ .

Definition 4.1.3 (weakly flexible). Let C be a category, let F : C −→ Ab be a
functor, and let X ∈ Ob(C). An element α ∈ F (X) is weakly flexible (with
respect to F) if there exists an object Y ∈ C and β ∈ F (Y) such that the set

deg(β, α) :=
{
n ∈ Z

∣∣ ∃f∈MorC(Y,X) F (f)(β) = n · α
}

is infinite.

Proposition 4.1.4 (weak flexibility and functorial semi-norms [44, Proposi-
tion 3.4]). Let C be a category, let F : C −→ Ab be a functor, let X ∈ Ob(C),

and let α ∈ F (X) be weakly flexible. If F̂ : C −→ Absn is a functorial semi-
norm on F , then |α|F̂ = 0.

Proof. Because α is weakly flexible, there exists an object Y ∈ Ob(C) and

β ∈ F (Y) such that deg(β, α) is infinite. If F̂ : C −→ Absn is a functorial
semi-norm on F , we obtain

∀n∈deg(β,α) |α|F̂ ≤
1

n
· |β|F̂ .

As the set deg(β, α) is infinite, we conclude that |α|F̂ = 0.

Corollary 4.1.5 (finite functorial semi-norms on representable functors [44,
Corollary 4.1]). Let C be a category and let F : C −→ Ab be a representable

functor. If F̂ : C −→ Absn is a functorial semi-norm on C, then F̂ is trivial,
i.e., for all X ∈ Ob(C) and all α ∈ F (X), we have

|α|F̂ = 0.

Proof. By Proposition 4.1.4, it suffices to show that all classes are weakly
flexible with respect to F .

Let Y ∈ Ob(C) be a representing object of F , i.e., V ◦ F ∼= MorC(Y, ·),
where V : Ab −→ Set is the forgetful functor; let β ∈ F (Y) be the universal
element, i.e., the element corresponding to idY ∈ MorC(Y, Y).

98 4 Abstraction and Prototyping

Let X ∈ Ob(X) and let α ∈ F (X). We show that deg(β, α) = Z: Clearly,
deg(β, α) ⊂ Z. Conversely, let n ∈ Z. Then, n · α corresponds to a mor-
phism f ∈ MorC(Y,X), which means that

n · α = F (f)(β).

Therefore, n ∈ deg(β, α).
Because deg(β, α) = Z, the class α is weakly flexible with respect to F .

Simplicial volume of weakly flexible manifolds Let M be an oriented closed
connected manifold and let n := dimM . We say that M is weakly flexible if
there exists an oriented closed connected n-manifold N such that the set{

deg f
∣∣ f ∈ map(N,M)

}
⊂ Z

of mapping degrees is infinite. If M is weakly flexible, then the R-fundamental
class [M]R of M is weakly flexible with respect to the singular homology
functor Hn(· ;R) with R-coefficients in degree n.

Hence, Proposition 4.1.4 shows: If M is weakly flexible, then every func-
torial semi-norm on Hn(· ;R) is zero on [M]R.

A concrete example of a functorial semi-norm on Hn(· ;R) is the `1-semi-
norm [25, 44]. The simplicial volume of an oriented closed connected manifold
is defined as the `1-semi-norm of the R-fundamental class. In particular, we
obtain: If M is an oriented closed connected weakly flexible manifold, then
the simplicial volume of M is zero.

Irrepresentability of bounded cohomology Let n ∈ N>1. Then Corol-
lary 4.1.5 shows that the bounded cohomology functor Hn

b (· ;R) is not
representable on the category of topological spaces, CW-complexes, groups,
finitely presented groups, . . . [44, Example 4.4]. Indeed, it is known that there
exist corresponding X such that the functorial semi-norm ‖·‖∞ on Hn

b (· ;R)
is non-trivial on Hn

b (X;R).

4.1.2 Lean

We implement the material from Section 4.1.1.

Source code 4.1.6. This is ffsn_rep.lean of the git repo [47].

We import basics on (semi-normed) Abelian groups and category theory.
Moreover, we will make use of the criterion from Section 2.4.

import tactic -- standard proof tactics

import data.real.basic

import zero -- a criterion for real numbers to be zero

import algebra.category.Group.basic

import category_theory.functor

4.1 Direct Formalisation: Functorial Semi-Norms 99

import analysis.normed.group.SemiNormedGroup

open classical -- we work in classical logic

Categories and functors Before going into the details of the implementation,
we summarise basic Lean notation in categories:

• In a category, X −→ Y (with a long arrow!) denotes the type of all
morphisms from X to Y.

• Forward composition of morphisms is denoted by �.

• If C and D are categories, then C ⇀⇁ D denotes the type of all functors
from C to D.

• Forward composition of functors is denoted by ≫.

• The symbol ∼= does not mean “is isomorphic to”, but denotes the type
of all isomorphisms.

We use the categories of (semi-normed) Abelian groups from mathlib und
define the corresponing forgetful functor. The categories AddCommGroup and
SemiNormedGroup1 are defined as categories of so-called bundled objects (i.e.,
the object type is a record type bundling a carrier type together with a type
class instance of this carrier type).

notation ‘Ab‘ := AddCommGroup

notation ‘Absn‘ := SemiNormedGroup1

-- The forgetful functor Absn ⇀⇁ Ab

noncomputable

instance has_forget_Absn_Ab

: category_theory.has_forget2 Absn Ab

:= { forget2 :=

{ obj := λ X, AddCommGroup.of X,

map := λ X Y, λ f : X −→ Y,

AddCommGroup.of_hom

(normed_group_hom.to_add_monoid_hom f) } }

notation ‘forget_sn‘ := has_forget_Absn_Ab.forget2

Functorial semi-norms We take the opportunity to give a slightly cleaner def-
inition of functorial semi-norms. Generally speaking, it is debatable whether
equality of objects in categories is a meaningful concept or whether one should
only work with isomorphisms. Similarly, equality of functors is not as well
adapted to the category setting as natural isomorphisms. Therefore, we mod-
ify the definition of functorial semi-norm using natural isomorphisms instead
of equality between functors. This is encoded in ffsn_setup.

100 4 Abstraction and Prototyping

def ffsn_on

{C : Type*} [C_is_cat : category_theory.category C]

(F : C ⇀⇁ Ab)

(Fsn : C ⇀⇁ Absn)

:= F ∼= Fsn ≫ forget_sn

def is_homogeneous_fsn

{C : Type*} [C_is_cat : category_theory.category C]

(Fsn : C ⇀⇁ Absn)

: Prop

:= ∀ X : C, ∀ a : (Fsn.obj) X,

∀ n : Z, ‖ n · a ‖ = |↑n| * ‖ a ‖

structure ffsn_setup

(C : Type*)

[C_is_cat : category_theory.category C]

:= mk :: (F : C ⇀⇁ Ab)

(Fsn : C ⇀⇁ Absn)

(Fsn_ffsn_on_F : ffsn_on F Fsn)

(Fsn_is_homogeneous : is_homogeneous_fsn Fsn)

The key property of functorial semi-norms is that norms of classes decrease
under morphisms:

lemma fsn_est_explicit

{C : Type*} [C_is_cat : category_theory.category C]

(s : ffsn_setup C)

{Y : C}

{X : C}

(f : Y −→ X)

(b : s.Fsn.obj Y)

: ‖ s.Fsn.map f b ‖ <- ‖ b ‖
:=

begin

-- we just spell out the properties of morphisms in Absn

let f’ := s.Fsn.map f,

have f_noninc : normed_group_hom.norm_noninc f’.1,

by exact f’.2,

show _,

by exact f_noninc b,

end

4.1 Direct Formalisation: Functorial Semi-Norms 101

Lifting elements Functors connected through forget_sn and a natural iso-
morphism, on objects, lead to isomorphic underlying Abelian groups.

noncomputable

def underlying_add_comm_group_iso

{C : Type*} [C_is_cat : category_theory.category C]

(s : ffsn_setup C)

(X : C)

: s.F.obj X ∼= AddCommGroup.of (s.Fsn.obj X).1

:= s.Fsn_ffsn_on_F.app X

Therefore, for a functorial semi-norm on F, we can view F-classes as
Fsn-classes. In pen-and-paper mathematics, we quickly pass over this step.
In Lean, we need to spell this out in more detail. We split this lifting into two
steps:

• lift1 lifts from F to the Abelian groups underlying the values of Fsn,
using the natural isomorphism from F to Fsn ≫ forget_sn;

• lift2 lifts from there to the actual values of Fsn using the built-in
conversions of carriers.

def lift1

{C : Type*} [C_is_cat : category_theory.category C]

(s : ffsn_setup C)

{X : C}

: s.F.obj X → AddCommGroup.of (s.Fsn.obj X)

:= (s.Fsn_ffsn_on_F.app X).hom

def lift2

{C : Type*} [C_is_cat : category_theory.category C]

(s : ffsn_setup C)

{X : C}

: AddCommGroup.of (s.Fsn.obj X) → (s.Fsn.obj X)

:= by tauto

@[simp]

noncomputable

def lift_elt

{C : Type*} [C_is_cat : category_theory.category C]

(s : ffsn_setup C)

{X : C}

: (s.F.obj X) → (s.Fsn.obj X)

:= (lift2 s) ◦ (lift1 s)

In particular, using a functorial semi-norm Fsn on F, we can measure the
size of F-classes by viewing them as Fsn-classes.

102 4 Abstraction and Prototyping

@[simp]

noncomputable

def sn

{C : Type*} [C_is_cat : category_theory.category C]

(s : ffsn_setup C)

{X : C}

(a : s.F.obj X)

: R
:= ‖ lift_elt s a ‖

To use lift_elt in computations, it is useful to know that lift_elt is
compatible with zsmul and that it is natural. In both cases, we prove the
corresponding statements for lift1 and lift2 and then combine them.

lemma lift1_zsmul

{C : Type*} [C_is_cat : category_theory.category C]

(s : ffsn_setup C)

(X : C)

: ∀ n : int, ∀ a : s.F.obj X,

lift1 s (n · a) = n · lift1 s a

:=

begin

simp[lift1],

end

lemma lift2_zsmul

{C : Type*} [C_is_cat : category_theory.category C]

(s : ffsn_setup C)

{X : C}

: ∀ n : int, ∀ a : AddCommGroup.of (s.Fsn.obj X),

lift2 s (n · a) = n · lift2 s a

:=

begin

tauto,

end

lemma lift_elt_zsmul

{C : Type*} [C_is_cat : category_theory.category C]

(s : ffsn_setup C)

{X : C}

: ∀ n : int, ∀ a : s.F.obj X,

lift_elt s (n · a) = n · lift_elt s a

:=

begin

simp[lift1_zsmul, lift2_zsmul],

end

4.1 Direct Formalisation: Functorial Semi-Norms 103

noncomputable

def underlying_hom

{C : Type*} [C_is_cat : category_theory.category C]

(s : ffsn_setup C)

{Y : C}

{X : C}

(f : Y −→ X)

:= AddCommGroup.of_hom

(normed_group_hom.to_add_monoid_hom (s.Fsn.map f).1)

lemma lift1_map

{C : Type*} [C_is_cat : category_theory.category C]

(s : ffsn_setup C)

{Y : C}

{X : C}

(f : Y −→ X)

(b : s.F.obj Y)

: lift1 s (s.F.map f b)

= (underlying_hom s f) (lift1 s b)

:=

begin

-- the natural iso from F to Fsn ≫ forget_sn

let t := s.Fsn_ffsn_on_F,

calc lift1 s (s.F.map f b)

= ((s.F.map f) � (t.hom.app X)) b

: by congr

... = ((t.hom.app Y) � ((s.Fsn ≫ forget_sn).map f)) b

: by rw [t.hom.naturality’]

... = underlying_hom s f (lift1 s b)

: by refl,

end

lemma lift2_map

{C : Type*} [C_is_cat : category_theory.category C]

(s : ffsn_setup C)

{Y : C}

{X : C}

(f : Y −→ X)

(b : AddCommGroup.of (s.Fsn.obj Y))

: lift2 s (underlying_hom s f b)

= s.Fsn.map f (lift2 s b)

:=

begin

104 4 Abstraction and Prototyping

tauto,

end

lemma lift_elt_map

{C : Type*} [C_is_cat : category_theory.category C]

(s : ffsn_setup C)

{Y : C}

{X : C}

(f : Y −→ X)

(b : s.F.obj Y)

: lift_elt s (s.F.map f b) = s.Fsn.map f (lift_elt s b)

:=

begin

simp[lift1_map, lift2_map],

end

Weakly flexible classes We translate the definition of degree sets and the
definition of weak flexibility. For weak flexibility, we replace the condition
that the degree set is infinite by an equivalent, more explicit, description.

def deg

{C : Type*} [C_is_cat : category_theory.category C]

(s : ffsn_setup C)

{X : C}

(a : s.F.obj X)

{Y : C}

(b : s.F.obj Y)

: set Z
:= { n : Z | ∃ f : Y −→ X,

(s.F.map f) b = n · a}

def is_weakly_flexible

{C : Type*} [C_is_cat : category_theory.category C]

(s : ffsn_setup C)

{X : C}

(a : s.F.obj X)

:= ∃ Y : C, ∃ b : s.F.obj Y,

∀ k : N, ∃ n : Z, n ∈ deg s a b

∧ |n| >- k

We have the straightforward norm estimate in terms of degrees:

lemma deg_estimate

{C : Type*} [C_is_cat : category_theory.category C]

(s : ffsn_setup C)

{X : C}

(a : s.F.obj X)

4.1 Direct Formalisation: Functorial Semi-Norms 105

{Y : C}

(b : s.F.obj Y)

(n : Z)
(n_deg_ba : n ∈ deg s a b)

(abs_n_pos : 0 < (|n| : real))

: sn s a <- sn s b / |↑n|
:=

begin

-- we introduce notation

let a’ := lift_elt s a,

let b’ := lift_elt s b,

-- hence: sn s a = ‖ a’ ‖ and sn s b = ‖ b’ ‖

-- we extract a morphism witnessing the degree condition

have ex_f_bna : ∃ f : Y −→ X, (s.F.map f) b = n · a, from

begin

dsimp only[deg] at n_deg_ba,

assumption,

end,

rcases ex_f_bna with 〈 f : Y −→ X, f_deg 〉,

-- using the monotonicity of f,

-- we first prove a division-free version of the claim

have n_times_thesis : |↑n| * ‖ a’ ‖ <- ‖ b’ ‖, from

calc |↑n| * ‖ a’ ‖ = ‖ n · a’ ‖
: by rw s.Fsn_is_homogeneous

... = ‖ lift_elt s ((s.F.map f) b) ‖
: by {congr,

simp only[f_deg], dsimp only[a’],

exact (lift_elt_zsmul s n a).symm}

... = ‖ s.Fsn.map f b’ ‖
: by {congr, exact (lift_elt_map s f b)}

... <- ‖ b’ ‖
: by exact fsn_est_explicit _ _ b’,

-- from the division-free version,

-- we conclude the actual claim

calc ‖ a’ ‖ <- ‖ b’ ‖ / |n|

: by exact (le_div_iff’ abs_n_pos).mpr n_times_thesis,

end

Vanishing of functorial semi-norms on weakly flexible classes It is now
straightforward to formalise and prove the vanishing result Proposition 4.1.4.
In order to conclude in the final step, we use the vanishing criterion for real
numbers established in Section 2.4.

106 4 Abstraction and Prototyping

theorem weakly_flexible_zero_fsn

{C : Type*} [C_is_cat : category_theory.category C]

(s : ffsn_setup C)

{X : C}

(a : s.F.obj X)

(a_is_weakly_flexible : is_weakly_flexible s a)

: sn s a = 0

:=

begin

let a’ := lift_elt s a,

-- thus, we need to show that ‖ a’ ‖ = 0

-- weak flexibility gives us a class b

-- that has infinitely many degrees to a

rcases a_is_weakly_flexible

with 〈 Y : C, 〈 b : s.F.obj Y, deg_ba_infinite 〉 〉,

let c := sn s b,

have c_geq_0 : 0 <- c,

by {dsimp only[c], exact norm_nonneg (lift_elt s b)},

-- from the degrees, we obtain the following estimate:

have a_leq_c_over_n : ∀ n : nat,

n > 0 → abs (‖ a’ ‖) <- c / (n : real), from

begin

assume n : nat,

assume n_pos : n > 0,

-- we extract a suitable degree ...

rcases (deg_ba_infinite n)

with 〈 m : Z, 〈 m_is_deg, abs_m_geq_n 〉〉,

-- ... make some basic observations ...

have pos_n : 0 < (n : real),

by exact nat.cast_pos.mpr n_pos,

have n_leq_abs_m : (n : real) <- |↑m|,
by {norm_cast at *, exact abs_m_geq_n},

have pos_abs_m : 0 < (|m| : real),

by exact gt_of_ge_of_gt n_leq_abs_m pos_n,

-- ... and combine the estimates

calc abs (‖ a’ ‖)
= ‖ a’ ‖
: by exact abs_norm_eq_norm a’

... <- ‖ lift_elt s b ‖ / |m|

4.1 Direct Formalisation: Functorial Semi-Norms 107

: by exact deg_estimate _ a b m m_is_deg pos_abs_m

... <- c / |m|

: by refl

... <- c / (n : real)

: by exact div_le_div_of_le_left c_geq_0 pos_n

n_leq_abs_m,

end,

-- we conclude using the archimedean property of R
-- through zero_via_1_over_n

show _,

by exact zero_via_1_over_n (‖ a’ ‖) c a_leq_c_over_n,

end

Representable functors only admit trivial finite functorial semi-norms In
order to formalise and prove Corollary 4.1.5 on functorial semi-norms on
representable functors, we first formalise the forgetful functor from Ab to Type

...; this corresponds to the forgetful functor Ab −→ Set.

@[simp]

def forget_Ab := category_theory.forget Ab

Moreover, we make two preparations to unclutter the main proof:
For a representable functor to Set (or Type ..., respectively), every class

is a push-forward of the universal class. This statement lifts also to functors
to Ab (or Ab, respectively) that are representable when composed with the
forgetful functor to Set (or Type ..., respectively).

lemma representable_rep

{C : Type*} [C_is_cat : category_theory.category C]

(F : C ⇀⇁ Ab)

(F_is_corep : category_theory.functor.corepresentable

(F ≫ forget_Ab))

{X : C}

(a : F.obj X)

: ∃ f : (F ≫ forget_Ab).corepr_X −→ X,

(F.map f) (F ≫ forget_Ab).corepr_x = a

:=

begin

let G := F ≫ forget_Ab,

let Y := G.corepr_X, -- "the" representing object

let b := G.corepr_x, -- "the" universal element

-- the underlying carriers of F X and G X coincide

have eq_GX : G.obj X = (F.obj X).1, by refl,

have eq_GY : G.obj Y = (F.obj Y).1, by refl,

108 4 Abstraction and Prototyping

-- the morphism corresponding to a via representability ...

let f := (G.corepr_w.app X).inv a,

-- ... is the desired morphism, because ...

use f,

-- ... it maps the universal element to a

show _, by

calc F.map f b

= G.map f b

: by tauto

... = (G.corepr_w.app X).hom f

: by exact (category_theory.functor.corepr_w_app_hom

G X f).symm

... = a

: by simp,

end

Moreover, if a degree set between two classes is the set Z of all integers,
then the target class clearly is weakly inflexible.

lemma deg_Z_weakly_flexible

{C : Type*} [C_is_cat : category_theory.category C]

(s : ffsn_setup C)

{X : C}

(a : s.F.obj X)

{Y : C}

(b : s.F.obj Y)

(deg_ab_Z : deg s a b = { n : Z | tt })

: is_weakly_flexible s a

:=

begin

unfold is_weakly_flexible,

use Y,

use b,

assume k : N,

use ↑k,
finish,

end

Finally, we state and prove Corollary 4.1.5:

theorem representable_zero_fsn

{C : Type*} [C_is_cat : category_theory.category C]

(s : ffsn_setup C)

(F_is_corep : category_theory.functor.corepresentable

(s.F ≫ forget_Ab))

{X : C}

4.1 Direct Formalisation: Functorial Semi-Norms 109

(a : s.F.obj X)

: sn s a = 0

:=

begin

let G := s.F ≫ forget_Ab,

-- we use the universal element for F (resp. G)

-- to show that a is weakly flexible;

let Y := category_theory.functor.corepr_X G,

-- "the" representing object

let b := category_theory.functor.corepr_x G,

-- "the" universal element

-- more precisely, we show that the degree set is all of Z
have deg_ab_Z : deg s a b = { n : Z | tt }, from

begin

-- by definition, every degree is an integer

have deg_sub_Z : deg s a b ⊆ { n : Z | tt }, from

begin

unfold deg,

finish,

end,

-- conversely, universality shows

-- that every integer can be realised as degree

have Z_sub_deg : {n : Z | tt } ⊆ deg s a b, from

begin

assume n : Z,
assume n_in_Z : n ∈ { m : Z | tt },

simp only[deg, set.mem_set_of_eq],

show ∃ (f : Y −→ X), (s.F.map f) b = n · a,
by exact representable_rep s.F F_is_corep (n · a),

end,

show _,

by exact set.subset.antisymm deg_sub_Z Z_sub_deg,

end,

-- we use the universal class as witness;

-- because the degree set is all of Z,
-- the weak flexiblity condition is clearly satisfied

have a_is_weakly_flexible : is_weakly_flexible s a,

by exact deg_Z_weakly_flexible s a b deg_ab_Z,

110 4 Abstraction and Prototyping

-- thus, we can apply the theorem on vanishing

-- of functorial semi-norms on weakly flexible classes

show _,

by exact weakly_flexible_zero_fsn s a

a_is_weakly_flexible,

end

4.2 Indirect Formalisation: Amenable Multiplicity

We give an example of an indirect formalisation of a recent approach in
algebraic and geometric topology.

We will talk about CW-complexes, fundamental groups π1, universal cov-
erings, and (bounded) cohomology. But to understand the formalisation pro-
cess, not much specific background knowledge is required: In Section 4.2.2,
we will identify the core arguments. This backbone will be formalised in Sec-
tion 4.2.3.

Mathematically, this technique corresponds to abstraction; implementa-
tion-wise, this technique is a form of prototyping. Similar approaches also
have been used in other formalisation projects [51, 49].

Remark 4.2.1. For simplicity, we will ignore basepoints in the rest of this
section; in our situation, this can be safely done because everything is suffi-
ciently invariant/closed under conjugations. The detailed explanations would
lead us too far astray.

4.2.1 Pen-and-Paper

Algebraic topology is concerned with invariants that measure the complexity
of topological spaces. For example, one can ask for the minimal multiplicity
that an open cover of a space needs to have if all members of the open cover
are required to be “topologically simple.” In particular, such multiplicity
invariants appear in applied algebraic topology [62, 22, 56].

If one interprets “topologically simple” as the inclusion of the open sets
into the ambient space being null-homotopic, this leads to the Lusternik–
Schnirelmann multiplicity/category of topological spaces [20].

• Upper bounds for such multiplicity invariants can be given by exhibiting
concrete “topologically simple” open covers of small multiplicity.

• In contrast, lower bounds require an understanding of all possible open
covers by topologically simple subsets, which is a significantly harder
task.

4.2 Indirect Formalisation: Amenable Multiplicity 111

We will focus on amenable open covers, i.e., open covers whose mem-
bers are constrained to an amenability condition on fundamental groups.
Amenable open covers have been introduced by Gromov [25].

Definition 4.2.2 (amenable open cover). Let X be a topological space. An
amenable open cover of X is an open cover U of X such that each V ∈ U
is path-connected and such that the image of π1(V) in π1(X) under the
map π1(V ↪→ X) induced by the inclusion is an amenable group.

Examples of amenable groups [58, 45] include all finite groups and all
Abelian groups. Moreover, the class of amenable groups is closed under sub-
groups, extensions, and directed unions. In particular, amenable subsets of
spaces can be of a rather complicated topological shape. This means that
finding meaningful lower bounds for the amenable multiplicity of spaces is
difficult.

Gromov showed that the comparison map between bounded cohomology
and ordinary (singular) cohomology provides lower bounds to the amenable
multiplicity of topological spaces [25]. Another proof of this result via spec-
tral sequences was given by Ivanov [31, 32]. Bounded cohomology H∗b (· ;R)
of topological spaces is defined by taking cohomology of bounded singular
cochains [25, 31]. Forgetting boundedness leads to a natural transforma-
tion T : H∗b (· ;R) =⇒ H∗(· ;R) from bounded cohomology to singular
chomology; this natural transformation is called comparison map.

Theorem 4.2.3. Let X be a path-connected CW-complex, let n ∈ N, and let
U be an amenable open cover of X with multiplicity multU ≤ n. Then, the
comparison map TX : Hn

b (X;R) −→ Hn(X;R) is trivial.

In other words: If the comparison map Hn
b (X;R) −→ Hn(X;R) is non-

trivial, then X admits no amenable open cover with multiplicity at most n;
i.e., in this case, the amenable muptlicity of X is at least n+ 1.

In the following, we give the main steps of an alternative proof of Theo-
rem 4.2.3 via equivariant nerves and classifying spaces of families [48].

Lemma 4.2.4 (equivariant nerves [48, Section 4]). Let X be a connected CW-
complex and let U be an amenable open cover of X. Then the nerve N of the
lifted cover of U (consisting of the connected components of the preimages

under the universal covering map) on X̃ has the following properties:

1. The nerve N admits a canonical π1(X)-CW-structure whose isotropy
groups all are amenable.

2. There exists a π1(X)-equivariant nerve map X̃ −→ N .

Proof of Theorem 4.2.3. We abbreviate G := π1(X). We pass to the equivari-

ant setting by considering the universal covering X̃ of X as a G-CW-complex
(with respect to the lifted CW-structure and the deck transformation action).
The universal covering map then induces natural isomorphisms

112 4 Abstraction and Prototyping

Hn(X;R) ∼= Hn
G(X̃;R) und Hn

b (X;R) ∼= Hn
G,b(X̃;R)

between (bounded) cohomology of X and equivariant (bounded) cohomology

of X̃, which are compatible with the comparison maps. Thus, it remains to
show that the comparison map TG,X̃ : Hn

G,b(X̃;R) −→ Hn
G(X̃;R) is trivial.

The key is to consider classifying spaces of G: If F is a family of subgroups
of G (i.e., a set of subgroups of G that is closed under conjugation and finite
intersections and that contains the trivial subgroup), then there exists a G-
CW-complex EFG with the following universal property [50]:

• All isotropy groups of EFG lie in F .

• For each G-CW-complex Y with isotropy in F there exists an up to
G-homotopy unique G-map Y −→ EFG.

We write EG for E{1}G (which is compatible with the classical notion of
classifying spaces).

Let N be the G-CW-complex obtained from the nerve of the lifted cover
of U and let ν : X̃ −→ N be a G-equivariant nerve map (Lemma 4.2.4).

Because N has isotropy in the family Am of amenable subgroups of G
(Lemma 4.2.4), there exists a classifying map cN : N −→ EAmG. Moreover,

as X̃ and EG are free G-spaces and the trivial group is amenable, we obtain
classifying maps cX̃ : X̃ −→ EG and cG,Am : EG −→ EAmG.

The isotropy groups of X̃ are amenable. Therefore, the universal property
of EAmG shows that the following diagram is commutative up to G-homotopy:

X̃

ν

��

X̃

c
X̃

��

EG

cG,Am

��

N
cN
// EAmG

We now apply the functor Hn
G,b(· ;R) to this diagram and extend the

diagram with the comparison map (Figure 4.1).

This diagram commutes: The left rectangle commutes because Hn
G,b(· ;R)

is G-homotopy invariant; the right rectangle commutes by the naturality of
the comparison map. We use the following observations:

• By the mapping theorem, Hn
G,b(cX̃) : Hn

G,b(EG;R) −→ Hn
G,b(X̃;R) is

an isomorphism [25].

Moreover, Hn
G,b(cG,Am) : Hn

G,b(EAmG;R) −→ Hn
G,b(EG;R) is an isomor-

phism [48, Proposition 5.2].

4.2 Indirect Formalisation: Amenable Multiplicity 113

Hn
G,b(X̃;R) Hn

G,b(X̃;R)
T
G,X̃
// Hn

G(X̃;R)

Hn
G,b(EG;R)

Hn
G,b(cX̃ ;R)

OO

Hn
G,b(EAmG;R)

Hn
G,b(cG,Am;R)

OO

Hn
G,b(cN ;R)

// Hn
G,b(N ;R)

TG,N

//

Hn
G,b(ν;R)

OO

Hn
G(N ;R)

Hn
G(ν;R)

OO

Figure 4.1: Applying (bounded) cohomology to the commutative diagram of
G-CW-complexes

• Finally, dimN = multU − 1 ≤ n − 1, and so Hn
G(N ;R) ∼= 0, be-

cause (equivariant) singular cohomology respects the dimension of CW-
complexes.

Therefore, TG,X̃ factors over 0 and so is the trivial map.

Another lower bound for the amenable multiplicity of aspherical spaces
is given by L2-Betti numbers [60, 61]. A benefit of the approach taken in
Section 4.2.2 is that it will also encompass this result on L2-Betti numbers.

4.2.2 Abstraction

The lower bound for amenable multiplicity presented in Section 4.2.1 in-
volves several objects and notions from equivariant algebraic topology such
as fundamental groups, the universal covering, G-CW-complexes, equivariant
(bounded) cohomology, . . . We will avoid implementing these notions con-
cretely by identifying the core arguments and abstracting over the concrete
setting. The abstract lower multiplicity bounds in this setting are formulated
in Theorem 4.2.9 (for a single functor) and in Theorem 4.2.14 (for a pair
of functors connected through a natural transformation). At the end of the
section, we will indicate how to apply these statements.

Abstracted setup We begin by collecting the categories and properties needed
for our arguments. We assume that we have the following (adding the stan-
dard interpretation in parentheses):

• For each group G, a category CWG
h (e.g., the homotopy category of

G-CW-complexes);

• A map dim: Ob(CWG
h) −→ N ∪ {∞} (e.g., the dimension);

114 4 Abstraction and Prototyping

• For each group G, a notion of “families of subgroups of G” (e.g., sets of
subgroups of G that are closed under conjugation, finite intersection,
and that contain the trivial subgroup);

• For each group G, the trivial family 1 of subgroups of G (e.g., consisting
only of the trivial subgroup);

• For each group G, each family F of subgroups of G, and each X ∈
Ob(CWG

h), a predicate that determines whether X “has isotropy in F”
or not (e.g., if all isotropy groups of X lie in F); objects with isotropy
in the trivial family 1 have isotropy in every other family as well;

• For each group G and each family F of subgroups of G, a classifying
space EFG, i.e., an object in CWG

h with isotropy in F that is terminal
in CWG

h among all objects with isotropy in F (e.g., classifying spaces
for families of subgroups [50]);

The universal maps given by such classifying spaces will be denoted
by c... and called classifying maps;

We abbreviate EG := E1G;

• A category CW1
h of (connected) CW-complexes and a map of the

type π1 : Ob(CW1
h) −→ Ob(Group) (e.g., the fundamental group with

respect to an implicit basepoint);

• For each X ∈ Ob(CW1
h) an object X̃ ∈ Ob(CW

π1(X)
h) that has isotropy

in 1 (e.g., the universal covering of X);

• A notion of open F -covers of objects X in CW1
h with isotropy in a given

family F of subgroups of π1(X); (e.g., open covers by path-connected
subsets such that the images on π1 (up to conjugation) lie in the given
family);

• A notion of multiplicity of such open covers (e.g., the geometric multi-
plicity);

• A notion of equivariant nerve: If X ∈ Ob(CW1
h) and if U is an open

F -cover of X, then the equivariant nerve is an object N of CW
π1(X)
h

– with isotropy in F ,

– with dimension equal to the multiplicity of U minus 1,

– and with a nerve map, i.e., a morphism ν : X̃ −→ N in CW
π1(X)
h .

(e.g., the nerve of the lifted cover on X̃; Lemma 4.2.4);

In the following, we will work with functors of the following type. For
simplicity, we formulate everything for covariant functors. The corresponding
statements for the contravariant case can then be obtained by considering
functors to the opposite category of C. As we are interested in vanishing
results, our target category is assumed to have a zero object.

4.2 Indirect Formalisation: Amenable Multiplicity 115

Setup 4.2.5. Let G be a group, let C be a category with a zero object, and
let H : CWG

h −→ C be a (covariant) functor. Moreover, let n ∈ N.

In the proof of Theorem 4.2.3, we used several properties of (equivariant)
bounded cohomology and (equivariant) cohomology. These properties can be
abstracted as follows:

Definition 4.2.6 (H-aspherical space). In the situation of Setup 4.2.5, an ob-

ject X ∈ Ob(CW1
h) is H-aspherical if π1(X) = G and H(cX̃) : H(X̃) −→

H(EG) is an isomorphism.

Definition 4.2.7 (admissible family). In the situation of Setup 4.2.5, a family F
of subgroups of G is strongly H-admissible if H(cG,F) : H(EG) −→ H(EFG)
is an isomorphism.

Definition 4.2.8 (dim-vanishing). In the situation of Setup 4.2.5, we say that
H is dim-vanishing (for n) if the following holds: For all Y ∈ Ob(CWG

h)
with dimY + 1 ≤ n, we have

H(Y) ∼=C 0.

Abstracted statements and proofs Then, a first version of the lower multi-
plicity bound looks as follows:

Theorem 4.2.9 (lower multiplicity bound). In the situation of Setup 4.2.5,
let H be dim-vanishing for n, let X ∈ Ob(CW1

h) be H-aspherical, let F be a
strongly H-admissible family of subgroups of G, and let U be an open F -cover
of X with multiplicity at most n. Then

H(X̃) ∼=C 0.

To improve modularity, we organise the main arguments of the proof into
separate statements:

Lemma 4.2.10 (the key commutative diagram). Let X ∈ Ob(CW1
h), let G :=

π1(X), let F be a family of subgroups of G, and let U be an open F -cover
of X. Let N be the equivariant nerve of U . Then the following diagram is
commutative in CWG

h :

X̃

ν

��

X̃

c
X̃

��

EG

cG,F

��

N
cN
// EFG

Proof. The three classifying maps indicated in the diagram all exist because
N has isotropy in F , because X̃ has trivial isotropy and EG has trivial
isotropy (whence also isotropy in F).

116 4 Abstraction and Prototyping

The universal covering X̃ has trivial isotropy and thus isotropy in the
family F . Because the classifying space EFG is terminal in CWG

h among

objects with isotropy in F , both routes from X̃ to EFG through the diagram
result in the same morphism (namely the classifying map X̃ −→ EFG).

Proposition 4.2.11 (factorisation of an admissible functor over the nerve). In
the situation of Setup 4.2.5, let X ∈ Ob(CW1

h) be H-aspherical, let F be a
strongly H-admissible family of subgroups of G, and let U be an open F -cover
of X. Let N be the equivariant nerve of U . Then idH(X) factors over H(N)
in the category C.

Proof. Applying the functor H to the commutative diagram in CWG
h from

Lemma 4.2.10, leads to the following commutative diagram in the target
category C:

H(X̃)

H(ν)

��

H(X̃)

H(c
X̃
)∼=C

��

H(EG)

H(cG,F)∼=C

��

H(N)
H(cN)

// H(EFG)

Because X is H-aspherical and the family F is strongly H-admissible, the
right vertical morphisms are isomorphism. This gives the desired factorisation
of idH(X) over H(N).

Lemma 4.2.12 (dim-vanishing functors on small nerves). In the situation of
Setup 4.2.5, let X ∈ Ob(CW1

h) satisfy π1(X) = G, let F be a family of
subgroups of G, let U be an F -cover of X with multU ≤ n, and let H be
dim-vanshing for n. Then the equivariant nerve N of U satisfies

H(N) ∼=C 0.

Proof. We have
dimN ≤ multU − 1 ≤ n− 1 < n.

Because H is dim-vanishing for n, we obtain H(N) ∼=C 0.

Proof of Theorem 4.2.9. As H is dim-vanishing for n, we have H(N) ∼=C 0
(Lemma 4.2.12).

In view of Proposition 4.2.11, the identity morphism of H(X) factors
over H(N) ∼=C 0. Therefore, H(X) ∼=C 0.

The lower-bound aspect of Theorem 4.2.9 is more visible when translated
into the following form:

4.2 Indirect Formalisation: Amenable Multiplicity 117

Corollary 4.2.13 (lower multiplicity bound, contrapositive version). In the sit-
uation of Setup 4.2.5, let H be dim-vanishing for n, let X ∈ Ob(CW1

h) be
H-aspherical, let F be a strongly H-admissible family of subgroups of G, and
let U be an open F -cover of X. If H(X̃) 6∼=C 0, then

multU > n.

Proof. This lower bound follows from Theorem 4.2.9 by contraposition.

The range of applicability of Theorem 4.2.9 can be improved by splitting
the hypotheses on the functor over two functors: One that satisfies the as-
phericity and admissibility condition and one that satisfies the dim-vanishing
condition. In fact, this is the version that we are aiming for.

Theorem 4.2.14 (lower multiplicity bound, refined version). In the situation
of Setup 4.2.5, let X ∈ Ob(CW1

h) be H-aspherical, let F be a strongly H-
admissible family of subgroups of G, and let U be an open F -cover of X of
multiplicity at most n. Moreover, let K : CWG

h −→ C be a functor that is
dim-vanishing for n and let T : H =⇒ K be a natural transformation. Then,
TX : H(X̃) −→ K(X̃) is the zero morphism.

Proof. Applying H to the commutative diagram from Lemma 4.2.10 and
extending by the natural transformation T , we obtain the following commu-
tative diagram in C:

K(X̃)
T
X̃ //

K(ν)

��

H(X̃)

H(ν)

��

H(X̃)

H(c
X̃
)∼=C

��

H(EG)

H(cG,F)∼=C

��

K(N)
TN

// H(N)
H(cN)

// H(EFG)

As K is dim-vanishing for n, we obtain K(N) ∼=C 0 (Lemma 4.2.12). There-
fore, the diagram shows that TX̃ factors over zero and thus is the zero mor-
phism.

Clearly, Theorem 4.2.9 can be obtained as a special case of Theorem 4.2.14,
using the identity transformation H =⇒ H. More generally, one could dis-
tribute the three properties asphericity, admissibility, and dim-vanishing over
three functors. As we have no applications for the fully generalised setting,
we did not add this triple version.

For example, Theorem 4.2.9 and Theorem 4.2.14 can be instantiated to
the following special cases [48, 43], where CWG

h , π1, etc. carry the usual
topological meaning:

118 4 Abstraction and Prototyping

Bounded cohomology We obtain the result of Theorem 4.2.3 by applying
Theorem 4.2.14 to the following setting:

• Let C be the opposite category of the category of R-vector spaces.

• Let H := Hn
G,b(· ;R) : CWG

h −→ C.

• Let F be the family of amenable subgroups of G (or, more generally, a
family consisting of uniformly boundedly acyclic subgroups of G).

• Let X be a connected CW-complex.

• Let K := Hn
G(· ;R) : CWG

h −→ C and let T : H =⇒ K be the com-
parison map from (equivariant) bounded cohomology to (equivariant)
cohomology.

Then the hypotheses of Theorem 4.2.14 are indeed satisfied [48, 43].

L2-Betti numbers We obtain Sauer’s vanishing result for L2-Betti numbers
by applying Theorem 4.2.9 to the following setting:

• Let C be the category of NG-modules localised at dimension isomor-
phisms, where NG denotes the group von Neumann algebra of G.

• Let H := HG
n (· ;NG) : CWG

h −→ C be the corresponding version of
L2-homology.

• Let F be the family of amenable subgroups of G (or, more generally, a
family consisting of L2-acyclic subgroups of G).

• Let X be a connected aspherical CW-complex.

Then, the hypotheses of Theorem 4.2.9 are indeed satisfied [43, Section 7].

The abstraction provided by Theorem 4.2.9 also applies to the relative
setting (by not taking the literal obvious topological interpretations of CWG

h ,
etc., but instead going into a relative equivariant setup) [43] and might be
applicable to other interesting cases in the future.

4.2.3 Lean

We implement the backbone from Section 4.2.2.

Source code 4.2.15. This is open_covers.lean of the git repo [47].

Instead of giving concrete formalisations of the category of equivariant
CW-complexes, etc., we only introduce corresponding placeholders in the
form of constants and axioms and connect them through the relevant prop-
erties.

4.2 Indirect Formalisation: Amenable Multiplicity 119

Caveat 4.2.16. It is tempting to introduce missing pieces with sorry. This
works well for Prop-valued pieces (by propositional extensionality).

However, constants/axioms/assumptions of other types should not be pro-
totyped with sorry, because any two sorry-terms of the same type will be
considered equal by Lean:

def x : nat := sorry

def y : nat := sorry

lemma x_is_y

: x = y

:=

begin

refl

end

In particular, this means that when later replacing sorry by a concrete
definition, the corresponding statements might not be provable anymore; this
would break the prototyping process.

Therefore, it is more advisable to use constant or axiom instead when
postulating the existence of objects etc. Of course, one still has to be careful
not to introduce inconsistent assumptions!

We import groups and basic category theory; moreover, as many parts will
be noncomputable, we declare the whole theory as noncomputable.

import tactic -- standard proof tactics

import algebra.category.Group.basic -- the category of groups

import group_theory.subgroup.basic -- subgroups

import category_theory.category.basic -- basic category theory

import category_theory.functor -- functors

import category_theory.limits.shapes.zero -- categories with

zero objects/morphisms

import data.nat.enat -- extended naturals

open classical -- we work in classical logic

open category_theory

noncomputable theory

Our setup requires us to speak about constructions that assign a category
to every group and also a group to every “CW-complex”. Therefore, we need
to limit the universe levels of these constructions. Mostly, we will only deal
with the single universe level u.

universes u v

Classifying spaces For a given group G, we introduce a name for the ho-
motopy category of G-CW-complexes. Moreover, each G-CW-complex has a

120 4 Abstraction and Prototyping

dimension in the extended natural numbers. None of this is given an actual
implementation; we only postulate the existence of such things.

constant CWh (G : Type u) [group G] : Type u

constant dim (G : Type u) [group G] : CWh G → enat

@[instance]

axiom CWh_cat (G : Type u) [group G] : (category.{u u} (CWh G))

Moreover, we postulate a function that assigns to each group the corre-
sponding type of all families of subgroups. If one were to give an actual imple-
mentation of this concept, one could realise family as a record (parametrised
over groups), having fields for the corresponding set of subgroups, and for the
properties of being conjugation-closed, finite intersection-closed, and for con-
taining the trivial subgroup. Moreover, we introduce a constant for the trivial
family, consisting only of the trivial subgroup.

constant family (G: Type u) [group G] : Type u

constant one (G : Type u) [group G] : family G

Families of subgroups can arise as isotropy groups of equivariant CW-
complexes. Thus, we postulate a predicate that checks whether the given
equivariant CW-complex has isotropy in the given family. If an equivariant
CW-complex has trivial isotropy, then it has isotropy in every other family.

constant has_isotropy_in

{G : Type u} [group G]

(F : family G)

(X : CWh G)

: Prop

axiom isotropy_one_implies_all

{G : Type u} [group G]

(F : family G)

(X : CWh G)

(X_is_free : has_isotropy_in (one G) X)

: has_isotropy_in F X

We can now formalise the notion of a classifying space of a family of
subgroups of a group G as being terminal among all G-CW-complexes with
isotropy in the given family. The universal property of terminality is ex-
pressed by the fact that the type X −→ space of morphisms (envisioned as
G-homotopy classes of G-maps) has a unique member.

structure classifying_space

(G : Type u) [group G]

(F : family G)

:= mk :: (space : CWh G)

(isotropy : has_isotropy_in F space)

4.2 Indirect Formalisation: Amenable Multiplicity 121

(universal_property : ∀ X : CWh G,

has_isotropy_in F X

→ unique (X −→ space))

Postulating existence of such classifying spaces is done by postulating a
function constructing such classifying spaces.

constant E

(G : Type u) [group G]

(F : family G)

: classifying_space G F

We introduce notation for the classifying maps (as the corresponding
unique morphism granted by the universal property).

def cm

(G : Type u) [group G]

(F : family G)

(X : CWh G)

(X_has_isotropy_in_F : has_isotropy_in F X)

: X −→ (E G F).space

:= ((E G F).universal_property X X_has_isotropy_in_F).

to_inhabited.default

In addition, we set up abbreviations for the case of the trivial family of
subgroups.

def E1

(G : Type u) [group G]

: classifying_space G (one G)

:= E G (one G)

lemma E1_isotropy

(G : Type u) [group G]

(F : family G)

: has_isotropy_in F (E1 G).space

:=

begin

exact isotropy_one_implies_all F

(E G (one G)).space

(E G (one G)).isotropy

end

def cm1_E

(G : Type u) [group G]

(F : family G)

: (E G (one G)).space −→ (E G F).space

:= cm G F (E G (one G)).space

(E1_isotropy G F)

122 4 Abstraction and Prototyping

Restricted covers and their equivariant nerves We postulate the existence
of the category of CW-complexes (connected, with an implicit basepoint) and
continuous maps and that we can assign a fundamental group to each such
object (with respect to the implicit basepoint). As we do not want to speak of
base-point preserving maps, we will not assume that the fundamental group
is a functor.

constant CW1 : Type u

@[instance]

axiom CW1_cat : category_theory.category.{u u} CW1

constant pi_1 (X : CW1.{u}) : Type u

@[instance]

axiom fundamental_group (X : CW1.{u}) : group (pi_1 X)

Moreover, we postulate the existence of universal coverings, but we only
restrict to the relevant features for us: The universal covering of an object X
in CW1 is an object of CWh (pi_1 X) with trivial isotropy (whence the isotropy
lies in any subgroup family of pi_1 X). In particular, we obtain a correspond-
ing classifying map.

constant universal_covering (X : CW1) : CWh (pi_1 X)

axiom universal_covering_is_free (X : CW1)

: has_isotropy_in (one (pi_1 X)) (universal_covering X)

lemma universal_covering_isotropy

(X : CW1)

(F : family (pi_1 X))

: has_isotropy_in F (universal_covering X)

:=

begin

exact isotropy_one_implies_all

F

(universal_covering X)

(universal_covering_is_free X),

end

def cm1_universal_covering

(X : CW1)

: universal_covering X −→ (E1 (pi_1 X)).space

:=

cm (pi_1 X) (one (pi_1 X))

(universal_covering X)

(universal_covering_is_free X)

4.2 Indirect Formalisation: Amenable Multiplicity 123

We postulate a function that assigns to each CW-complex the type of all
open covers with restricted isotropy – envisioned as covers by path-connected
open subsets such that the images of the fundamental groups are “conjugate
to” elements of the given family (the latter could be done in our strange
implicit-basepoint setting!). Again, in a concrete implementation, this could
be realised as a suitable record type.

constant open_cover

(X : CW1)

(F : family (pi_1 X))

: Type u

Such open covers are supposed to have a multiplicity (in the extended nat-
ural numbers) and a nerve of the corresponding lifted cover (whose dimension
can be expressed in terms of the multiplicity) as well as a nerve map. The
essential connection between restricted open covers and the nerves of their
lifted covers is encoded in the isotropy condition in nerve_isotropy.

constant open_cover

(X : CW1)

(F : family (pi_1 X))

: Type u

constant multiplicity

{X : CW1}

{F : family (pi_1 X)}

(U : open_cover X F)

: enat

constant nerve

{X : CW1}

{F : family (pi_1 X)}

(U : open_cover X F)

: CWh (pi_1 X)

constant nerve_map

{X : CW1}

{F : family (pi_1 X)}

(U : open_cover X F)

: (universal_covering X) −→ (nerve U)

axiom nerve_dim

{X : CW1}

{F : family (pi_1 X)}

(U : open_cover X F)

: dim (pi_1 X) (nerve U) + 1 = multiplicity U

124 4 Abstraction and Prototyping

axiom nerve_isotropy

{X : CW1}

{F : family (pi_1 X)}

(U : open_cover X F)

: has_isotropy_in F (nerve U)

The lower bound strategy We are now prepared to implement the actual
lower bound strategy. In the pen-and-paper version, we could organise many
arguments neatly in terms of commutative diagrams. In the implementation,
we will replace these diagrams by the corresponding equations.

As first step, we formalise the key commutative diagram on the level of
G-CW-complexes (Lemma 4.2.10):

lemma commutative_diagram

(X : CW1)

(F : family (pi_1 X))

(U : open_cover X F)

: (nerve_map U) -- nerve map: ucov X −→ nerve

�
(cm (pi_1 X) F (nerve U) -- nerve −→ E_F G

(nerve_isotropy U))

= (cm1_universal_covering X) -- ucov X −→ EG

�
(cm1_E (pi_1 X) F) -- EG −→ E_F G

:=

begin

-- notation for the relevant classifying space

let EFG := E (pi_1 X) F,

-- the universal property of E_F G with domain ucov X:

-- there exists a unique morphism ucov X −→ E_F G

have unique_X_EFG :

unique (universal_covering X −→ EFG.space),

by exact EFG.universal_property (universal_covering X)

(universal_covering_isotropy X F),

-- the two maps are morphisms ucov X −→ E_F G

let f1 : universal_covering X −→ EFG.space

:= (nerve_map U)

�
(cm (pi_1 X) F (nerve U)

(nerve_isotropy U)),

let f2 : universal_covering X −→ EFG.space

:= (cm1_universal_covering X)

�
(cm1_E (pi_1 X) F),

4.2 Indirect Formalisation: Amenable Multiplicity 125

-- therefore, the universal property of E_F G

-- proves the claim

calc f1 = unique_X_EFG.to_inhabited.default

: by exact @unique.eq_default _ unique_X_EFG f1

... = f2

: by exact @unique.default_eq _ unique_X_EFG f2,

end

The lower bound strategy consists of applying functors to this commuta-
tive diagram. Therefore, we first formalise the axiomatisation of such func-
tors. The target category is a category with a zero object.

constant C : Type u

@[instance]

constant C_is_cat : category.{u u} C

@[instance]

constant C_has_zero

: category_theory.limits.has_zero_object.{u u} C

-- allows us to use 0 for the zero object C_has_zero.zero

instance : has_zero C

:= category_theory.limits.has_zero_object.has_zero

-- and to use 0 for the zero morphisms

instance : category_theory.limits.has_zero_morphisms C

:= category_theory.limits.has_zero_object.

zero_morphisms_of_zero_object

In this setting, we can simply translate the definitions from Section 4.2.2:

def is_aspherical_for

(X : CW1)

(H : CWh (pi_1 X) ⇀⇁ C)

:= is_iso (H.map (cm1_universal_covering X))

def is_admissible_family_for

{G : Type u} [group G]

(F : family G)

(H : CWh G ⇀⇁ C)

:= is_iso (H.map (cm1_E G F))

def dim_vanishing

{G : Type u} [group G]

(H : CWh G ⇀⇁ C)

(n : nat)

:= ∀ Y : CWh G, dim G Y + 1 <- n → (H.obj Y ∼= 0)

126 4 Abstraction and Prototyping

structure admissible_functor

(X : CW1)

(F : family (pi_1 X))

:= mk :: (functor : (CWh (pi_1 X)) ⇀⇁ C)

(ucov_iso : is_aspherical_for X functor)

-- iso for ucov X → EG

(family_admissible : is_admissible_family_for

F functor)

-- iso for EG → EFG

As next step, we apply admissible functors to the commutative diagram,
obtaining the factorisation over the value on the equivariant nerve (Proposi-
tion 4.2.11).

lemma admissible_functors_factor_over_nerve

(X : CW1)

(F : family (pi_1 X))

(U : open_cover X F)

(H : admissible_functor X F)

: ∃ g : H.functor.obj (nerve U)

−→ H.functor.obj (universal_covering X),

(H.functor.map (nerve_map U)) � g

= 1 (H.functor.obj (universal_covering X))

:=

begin

let G := pi_1 X,

let HX : C := H.functor.obj (universal_covering X),

let EG := E1 (pi_1 X),

let EFG := E (pi_1 X) F,

let HN : C := H.functor.obj (nerve U),

-- the commutative diagram:

-- both ways of getting from ucov X to E_FG coincide

let f11 : universal_covering X −→ (nerve U)

:= nerve_map U,

let f12 : nerve U −→ EFG.space

:= cm (pi_1 X) F (nerve U) (nerve_isotropy U),

let f21 : universal_covering X −→ EG.space

:= cm1_universal_covering X,

let f22 : EG.space −→ EFG.space

:= cm1_E G F,

have comm_diag : f11 � f12 = f21 � f22,

by exact commutative_diagram X F U,

4.2 Indirect Formalisation: Amenable Multiplicity 127

-- using the commutative diagram,

-- we show that id HX factors over HN;

-- More precisely:

-- id_HX = H f11

-- � H f12 � inv (H (f21 � f22))

-- the first part of the factorisation:

let f : HX −→ HN

:= H.functor.map f11,

-- the second part of the factorisation:

-- preparation:

-- admissibility of H with respect to F

-- shows that H (f21 � f22) is an iso

have H_f2_is_iso : is_iso (H.functor.map (f21 � f22)), from

begin

-- H (f21 � f22) = H f21 � H f22 is an iso,

-- because H f21 and H f22 are isos

have H_f2_comp : H.functor.map (f21 � f22)

= (H.functor.map f21) � (H.functor.map f22),

by simp,

have : is_iso (H.functor.map f21 � H.functor.map f22),

by exact @is_iso.comp_is_iso C C_is_cat _ _ _

(H.functor.map f21) (H.functor.map f22)

H.ucov_iso H.family_admissible,

show _, by {simp only[H_f2_comp], assumption},

end,

let i_H_f2 := @inv C C_is_cat _ _

(H.functor.map (f21 � f22)) H_f2_is_iso,

let g : HN −→ HX

:= H.functor.map f12 � i_H_f2,

-- the computation that id HX indeed factors over HN:

have id_HX_factors_over_HN : f � g = 1 HX, from

calc f � g = H.functor.map f11

� H.functor.map f12 � i_H_f2

: by simp -- by definition

... = H.functor.map (f11 � f12)

� i_H_f2

: by simp -- nz � zn cancels and functoriality

... = H.functor.map (f21 � f22)

� i_H_f2

128 4 Abstraction and Prototyping

: by simp[comm_diag]

-- finally, we use the commutative diagram

... = 1 HX

: by exact @is_iso.hom_inv_id C C_is_cat _ _

(H.functor.map (f21 � f22))

H_f2_is_iso,

-- thus, f and g witness the claimed factorisation

show _,

by {use g, exact id_HX_factors_over_HN},

end

In the presence of the dim-vanishing property, the value on the equiv-
ariant nerve is zero if the multiplicity of the given open cover is small
(Lemma 4.2.12):

lemma dim_vanishing_functors_vanish_on_small_nerves

(n : nat)

(X : CW1)

(F : family (pi_1 X))

(U : open_cover X F)

(mult_U_leq_n : multiplicity U <- n)

(H : CWh (pi_1 X) ⇀⇁ C)

(H_dim_vanishing : dim_vanishing H n)

: H.obj (nerve U) ∼= 0

:=

begin

-- simplified notation:

let G := pi_1 X,

let HN : C := H.obj (nerve U),

-- the dimension of the nerve is smaller than n

have dim_N_leq_n : dim G (nerve U) + 1 <- n, by

calc dim G (nerve U) + 1 = multiplicity U

: by exact nerve_dim U

... <- n

: by exact mult_U_leq_n,

-- thus, we apply the dim-vanishing property

exact H_dim_vanishing (nerve U) dim_N_leq_n,

end

As final preparation before the main proof, we record the fact that if the
identity of an object factors over zero, then the object is zero.

lemma id_factors_over_zero_iso_zero

(X : C)

(f : X −→ 0)

4.2 Indirect Formalisation: Amenable Multiplicity 129

(g : 0 −→ X)

(id_factors : 1 X = f � g)

: X ∼= 0

:=

begin

-- we use f and g as isomorphisms

exact { hom := f,

inv := g,

hom_inv_id’ := _,

inv_hom_id’ := _},

-- f � g = id by assumption:

exact id_factors.symm,

-- g � f = id by the universal property of the zero object

ext1,

end

After this preparation, we can assemble the first version of the lower bound
strategy (Theorem 4.2.9):

theorem restricted_cover_lower_bound

(n : nat)

(X : CW1)

(F : family (pi_1 X))

(U : open_cover X F)

(mult_U_leq_n : multiplicity U <- n)

(H : admissible_functor X F)

(H_dim_vanishing : dim_vanishing H.functor n)

: H.functor.obj (universal_covering X) ∼= 0

:=

begin

-- we first show that H(nerve) ∼= 0,

-- using the dim-vanishing property

let HN : C := H.functor.obj (nerve U),

have HN_is_zero : HN ∼= 0,

by exact dim_vanishing_functors_vanish_on_small_nerves

n X F U mult_U_leq_n

H.functor H_dim_vanishing,

-- the resulting isomorphisms to and from the zero object

let nz : HN −→ 0 := HN_is_zero.hom,

let zn : 0 −→ HN := HN_is_zero.inv,

-- second, the preparation on classifying spaces shows that

-- the identity on H(ucov X) factors over H(nerve)

let HX := H.functor.obj (universal_covering X),

130 4 Abstraction and Prototyping

let f := H.functor.map (nerve_map U),

-- we choose such a factorisation

choose g fg_idHX

using admissible_functors_factor_over_nerve X F U H,

let fz : HX −→ 0 := f � nz,

let zg : 0 −→ HX := zn � g,

-- thus, the identity on H(ucov X) factors over 0

have id_HX_factors_over_0 : fz � zg = 1 HX, from

calc fz � zg = f � nz � zn � g

: by simp

... = f � g

: by simp -- nz � zn cancels

... = 1 HX

: by exact fg_idHX,

-- hence, H(ucov X) must be zero

show HX ∼= 0,

by exact id_factors_over_zero_iso_zero HX fz zg

id_HX_factors_over_0.symm,

end

Similarly, also the contrapositive version (Corollary 4.2.13) admits a
straightforward translation: We first note down basics on non-isomorphic
objects and then prove the contrapositive version by contradiction; proofs by
contradiction are initated by by_contradiction.

def not_isomorphic

{C : Type v}

[category.{u v} C]

(X : C)

(Y : C)

:= ¬ ∃ f : X −→ Y, is_iso f

lemma iso_implies_not_not_isomorphic

{C : Type v}

[category.{u v} C]

(X : C)

(Y : C)

(X_iso_Y : X ∼= Y)

: ¬ not_isomorphic X Y

:=

begin

-- X ∼= Y shows that there exists an isomorphism X −→ Y

4.2 Indirect Formalisation: Amenable Multiplicity 131

have ex_iso : ∃ f : X −→ Y, is_iso f, from

begin

let f := X_iso_Y.hom,

have f_is_iso : is_iso f,

by exact category_theory.is_iso.of_iso X_iso_Y,

use f,

show _, by exact f_is_iso,

end,

-- thus, there does not not exist an iso

unfold not_isomorphic,

exact not_not.mpr ex_iso,

end

theorem restricted_cover_lower_bound_cp

(n : nat)

(X : CW1)

(F : family (pi_1 X))

(U : open_cover X F)

(H : admissible_functor X F)

(H_dim_vanishing : dim_vanishing H.functor n)

(H_non_zero : not_isomorphic

(H.functor.obj (universal_covering X))

0)

: multiplicity U > n

:=

begin

-- we apply the theorem and convert the contraposition

by_contradiction negation,

have mult_leq_n : multiplicity U <- n,

by exact not_lt.mp negation,

have HX_zero : H.functor.obj (universal_covering X) ∼= 0,

by exact restricted_cover_lower_bound n X F U mult_leq_n

H H_dim_vanishing,

have not_HX_non_zero :

¬ not_isomorphic (H.functor.obj (universal_covering X))

0,

by exact iso_implies_not_not_isomorphic _ _ HX_zero,

-- not_HX_non_zero contradicts HX_non_zero; thus we are done

finish,

end

The lower bound strategy; refined version with two functors To model
the version of the lower bound strategy in Theorem 4.2.14 we make use

132 4 Abstraction and Prototyping

of the fact that records in Lean are extensible: We extend the structure of
admissible_functor by a second functor and a corresponding natural trans-
formation. The formalisation of Theorem 4.2.14 and its proof is a straight-
forward translation of the pen-and-paper version.

structure admissible_functor_2

(X : CW1)

(F : family (pi_1 X))

extends admissible_functor X F

:= mk :: (functor2 : (CWh (pi_1 X)) ⇀⇁ C)

(nat_trafo : functor2 −→ functor)

theorem restricted_cover_lower_bound_2

(n : nat)

(X : CW1)

(F : family (pi_1 X))

(U : open_cover X F)

(mult_U_leq_n : multiplicity U <- n)

(H : admissible_functor_2 X F)

(K_dim_vanishing : dim_vanishing H.functor2 n)

: H.nat_trafo.app (universal_covering X) = 0

:=

begin

-- simplified notation:

let G := pi_1 X,

-- the first functor

let HX := H.functor.obj (universal_covering X),

let H’ : admissible_functor X F

:= admissible_functor.mk

H.functor H.ucov_iso H.family_admissible,

-- the second functor

let K : CWh G ⇀⇁ C

:= H.functor2,

let KN := K.obj (nerve U),

let KX := K.obj (universal_covering X),

-- the natural transformation

let T := H.nat_trafo,

-- we combine

-- * the factorisation of id on H(ucov X) over H(nerve)

-- * with the natural transformation

-- * and the vanishing of K(nerve)

-- we first show that K(nerve) ∼= 0,

-- using the dim-vanishing property

4.2 Indirect Formalisation: Amenable Multiplicity 133

have KN_is_zero : KN ∼= 0,

by exact dim_vanishing_functors_vanish_on_small_nerves

n X F U mult_U_leq_n K K_dim_vanishing,

-- the resulting isomorphisms to and from the zero object

let nz : KN −→ 0 := KN_is_zero.hom,

let zn : 0 −→ KN := KN_is_zero.inv,

-- second, the preparation on classifying spaces shows that

-- H(ucov X) factors over H(nerve map)

let f := H.functor.map (nerve_map U),

choose g fg_idHX

using admissible_functors_factor_over_nerve X F U H’,

-- we now combine both aspects

-- and show that T(ucov X) factors over 0

let TX := T.app (universal_covering X),

let TN := T.app (nerve U),

let Kn := K.map (nerve_map U),

let fz : KX −→ 0 := Kn � nz,

let zg : 0 −→ HX := zn � TN � g,

show _, by

calc TX = TX � 1 HX

: by simp

... = TX � f � g

: by {congr, rw fg_idHX}

... = Kn � TN � g

: by simp -- natural transformation

... = Kn � nz � zn � TN � g

: by simp -- nz � zn cancels

... = fz � zg

: by simp

... = (0 : KX −→ 0) � (0 : 0 −→ HX)

: by {congr, ext, ext}

... = 0

: by simp,

end

This concludes the formalisation of the material from Section 4.2.2.
One could now start filling in concrete implementations of the items that

we abstracted over – such as equivariant CW-complexes, singular cohomology,
bounded cohomology, the family of amenable subgroups, . . . But this would
be a different story.

134 4 Abstraction and Prototyping

4.E Exercises

Exercise 4.E.1 (dependency graph).

1. Pick your favourite textbook or lecture notes.

2. Can you formalise the very first definition of the book? Or are there
missing pieces? How could the missing pieces be replaced by suitable
postulates/abstractions?

3. Pick your favourite chapter.

4. Draw a dependency graph for the definitions, results, proofs, and ex-
amples of this chapter.

Exercise 4.E.2 (fundamental theorems). Pick a key theorem such as the fun-
damental theorem of algebra, the Brouwer fixed point theorem, . . . and carry
out the following steps:

1. Formalise the statement of the theorem.

2. Pen-and-paper: Pick one proof of the theorem and structure it into its
major steps and ideas.

3. Formalise this proof skeleton, using postulates/abstractions whenever
necessary or convenient. Use sorry only in appropriate situations!

4. Formalise a statement/proof that uses this theorem.

Exercise 4.E.3 (the Riemann hypothesis). Make an attempt at formalising the
statement of the Riemann hypothesis. Which steps will you keep in the form
of postulates/axioms? Which steps can you fill in with a concrete formalisa-
tion?

Exercise 4.E.4 (formalisation challenge).

1. Pick your favourite research paper.

2. Pick your favourite result/proof from this paper.

3. Which description matches this result/proof best?

• All background material is already available in Lean.

• The result is already formulated on an abstract level.

• The result could be formalised through a suitable abstraction step.

4. Make a concrete plan for formalising (a suitable abstraction of) this
result/proof.

5. Carry out the plan!

Bibliography

[1] D. Adams. The Hitchhiker’s Guide to the Galaxy, Pan Books, 1979.
Cited on page: 12

[2] A. Asperti, H. Geuvers, R. Natarajan. Social processes, program ver-
ification and all that, Math. Structures Comput. Sci., 19(5), 877–896,
2009. Cited on page: 6

[3] J. Avigad. Mathlib naming conventions.
https://leanprover-community.github.io/contribute/naming.html
Cited on page: 87

[4] J. Avigad. Library Style Guidelines.
https://leanprover-community.github.io/contribute/style.html
Cited on page: 87

[5] J. Avigad, G. Ebner, S. Ullrich. The Lean Reference Manual, Re-
lease 3.3.0, 2018.
https://leanprover.github.io/reference/lexical structure.html
Cited on page: 7, 13

[6] J. Avigad, L. de Moura, S. Kong. Theorem Proving in Lean, Re-
lease 3.23.0, 2021.
https://leanprover.github.io/theorem proving in lean/
Cited on page: 5, 7, 9, 13, 88

[7] J. Avigad, L. de Moura, S. Kong, S. Ullrich. Theorem Proving in Lean 4,
2022.
https://leanprover.github.io/theorem proving in lean4/
Cited on page: 4

https://leanprover-community.github.io/contribute/naming.html
https://leanprover-community.github.io/contribute/style.html
https://leanprover.github.io/reference/lexical_structure.html
https://leanprover.github.io/theorem_proving_in_lean/
https://leanprover.github.io/theorem_proving_in_lean4/

136 Bibliography

[8] A. Baanen, A. Bentkamp, J. Blanchette, J. Hölzl, J. Limperg. The
Hitchhiker’s Guide to Logical Verification, 2021 Standard Edition,
2021.
https://github.com/blanchette/logical verification 2021/raw/main/
hitchhikers guide.pdf
Cited on page: 5, 7, 13

[9] H. Barendregt, W. Dekkers, R. Statman. Lambda calculus with types,
with contributions from F. Alessi, M. Bezem, F. Cardone, M. Coppo,
M. Dezani-Ciancaglini, G. Dowek, S. Ghilezan, F. Honsell, M. Moort-
gat, P. Severi and P. Urzyczyn. Perspectives in Logic. Association for
Symbolic Logic, Cambridge University Press, 2013. Cited on page: 10

[10] Y. Bertot, P. Castéran. Interactive Theorem Proving and Program De-
velopment. Coq’Art: The Calculus of Inductive Constructions, Texts
in Theoretical Computer Science, An EATCS Series, Springer, 2004.
Cited on page: 7

[11] N. Bourbaki. General topology. Chapters 1–4, translated from the
French, reprint of the 1989 English translation, Elements of Mathe-
matics, Springer, 1998. Cited on page: 42

[12] K. Buzzard, J. Commelin, P. Massot. Lean perfectoid spaces.
https://leanprover-community.github.io/lean-perfectoid-spaces/
Cited on page: 6, 7

[13] D. Calegari. scl, MSJ Memoirs, vol 20, Mathematical Society of Japan,
2009. Cited on page: 36

[14] M. Carneiro. The type theory of Lean, 2019.
https://github.com/digama0/lean-type-theory/releases
Cited on page: 8, 88

[15] L. Chicli, L. Pottier, C. Simpson. Mathematical quotients and quo-
tient types. Types for proofs and programs, 95–107, Lecture Notes in
Computer Science, 2646, Springer, 2003. Cited on page: 89

[16] A. Chlipala. Certified Programming with Dependent Types: A Prag-
matic Introduction to the Coq Proof Assistant, MIT Press, 2014. Cited
on page: 9

[17] C. Cohen. Pragmatic quotient types in Coq, Interactive Theorem Prov-
ing, 213–228, Lecture Notes in Computer Science, 7998, Springer, 2013.
Cited on page: 89

[18] Coq community. Mathematical Components.
https://math-comp.github.io/ Cited on page: 6

https://github.com/blanchette/logical_verification_2021/raw/main/hitchhikers_guide.pdf
https://github.com/blanchette/logical_verification_2021/raw/main/hitchhikers_guide.pdf
https://leanprover-community.github.io/lean-perfectoid-spaces/
https://github.com/digama0/lean-type-theory/releases
https://math-comp.github.io/

Bibliography 137

[19] T. Coquand, G. Huet. The calculus of constructions, Technical Report
RR-0530, INRIA, 1986.
https://hal.inria.fr/inria-00076024
Cited on page: 7

[20] O. Cornea, G. Lupton, J. Oprea, D. Tanré. Lusternik-Schnirelmann cat-
egory, Mathematical Surveys and Monographs, 103, American Mathe-
matical Society, 2003. Cited on page: 110

[21] H. Edelsbrunner, J. L. Harer. Computational topology. An introduction,
American Mathematical Society, 2010. Cited on page: 50

[22] M. Farber. Invitation to topological robotics, Zürich Lectures in Ad-
vanced Mathematics, European Mathematical Society, 2008. Cited on
page: 110

[23] D. P. Friedman, D. T. Christiansen. The Little Typer, MIT Press, 2018.
Cited on page: 5

[24] R. Ghrist. Elementary Applied Topology, ed. 1.0, Createspace, 2014.
https://www2.math.upenn.edu/∼ghrist/notes.html
Cited on page: 50

[25] M. Gromov. Volume and bounded cohomology, Publ. Math. IHES, 56,
5–99, 1982. Cited on page: 96, 98, 111, 112

[26] M. Gromov. Metric structures for Riemannian and non-Riemannian
spaces. With appendices by M. Katz, P. Pansu, and S. Semmes, trans-
lated by S. M. Bates, Progress in Mathematics, 152, Birkhäuser, 1999.
Cited on page: 96

[27] T. C. Hales. Developments in formal proofs, Astérisque, 367–368, Exp.
no. 1086, 2015. Cited on page: 6

[28] J. Harrison. Verification: industrial applications. In: Proof technology
and computation, 161–205, NATO Sci. Ser. III Comput. Syst. Sci., 200,
IOS, 2006. Cited on page: 6

[29] M. Herlihy, D. Kozlov, S. Rajsbaum. Distributed computing through
combinatorial topology, Elsevier/Morgan Kaufmann, 2014. Cited on
page: 50

[30] Isabelle community. The Archive of Formal Proofs,
https://www.isa-afp.org/
Cited on page: 6

[31] N. V. Ivanov. Foundations of the theory of bounded cohomology, J. So-
viet Math., 37, 1090–1114, 1987. Cited on page: 111

https://hal.inria.fr/inria-00076024
https://www2.math.upenn.edu/~ghrist/notes.html
https://www.isa-afp.org/

138 Bibliography

[32] N. V. Ivanov. Leray theorems in bounded cohomology theory, preprint,
arXiv:2012.08038 [math.AT], 2020. Cited on page: 111

[33] Lean community. Learning Lean,
https://leanprover-community.github.io/learn.html
Cited on page: 5, 7, 13

[34] Lean community. Get started with Lean,
https://leanprover-community.github.io/get started.html
Cited on page: 16, 22

[35] Lean community. Lean web editor,
https://leanprover-community.github.io/lean-web-editor/
Cited on page: 7, 22

[36] Lean community. Using leanproject,
https://leanprover-community.github.io/leanproject.html
Cited on page: 22

[37] Lean community. mathlib,
https://leanprover-community.github.io/mathlib-overview.html
Cited on page: 6, 9, 32, 33

[38] Lean community. mathlib4,
https://github.com/leanprover-community/mathlib4
Cited on page: 4

[39] Lean community. Lean 4,
https://github.com/leanprover/lean4
Cited on page: 4

[40] Lean community. Papers about Lean,
https://leanprover-community.github.io/papers.html Cited on page: 6

[41] Lean community. Documentation style,
https://leanprover-community.github.io/contribute/doc.html
Cited on page: 87

[42] Lean community. How to contribute to mathlib,
https://leanprover-community.github.io/contribute/index.html
Cited on page: 87

[43] K. Li, C. Löh, M. Moraschini. Bounded acylicity and relative sim-
plicial volume, preprint, arXiv:2202.05606 [math.AT], 2022. Cited on
page: 117, 118

[44] C. Löh. Finite functorial semi-norms and representability, Int. Math.
Res. Not., 2016(2), 3616–3638, 2016. Cited on page: 96, 97, 98

https://leanprover-community.github.io/learn.html
https://leanprover-community.github.io/get_started.html
https://leanprover-community.github.io/lean-web-editor/
https://leanprover-community.github.io/leanproject.html
https://leanprover-community.github.io/mathlib-overview.html
https://github.com/leanprover-community/mathlib4
https://github.com/leanprover/lean4
https://leanprover-community.github.io/papers.html
https://leanprover-community.github.io/contribute/doc.html
https://leanprover-community.github.io/contribute/index.html

Bibliography 139

[45] C. Löh. Geometric Group Theory. An Introduction, Universitext,
Springer, 2018. Cited on page: 111

[46] C. Löh. The example from Figure 1.1 in the Lean web editor:
hyperlink to https://leanprover-community.github.io/lean-web-editor...,
containing the code at https://loeh.app.uni-regensburg.de/mapa/intro
example.lean Cited on page: 11

[47] C. Löh. git repository with all Lean source files covered in these notes
and templates/solutions to selected exercises,
https://gitlab.com/polywuisch/mapa notes update! Cited on page: 22,
30, 36, 39, 42, 44, 45, 46, 52, 58, 65, 73, 78, 83, 90, 98, 118

[48] C. Löh, R. Sauer. Bounded cohomology of amenable covers via classify-
ing spaces, Enseign. Math., 66(1/2), 151–172, 2020. Cited on page: 111,
112, 117, 118

[49] C. Löh, M. Uschold. L2-Betti numbers and computability of reals,
preprint, arXiv:2202.03159 [math.GR], 2022. Cited on page: 110

[50] W. Lück. Survey on classifying spaces for families of subgroups, Infi-
nite groups: geometric, combinatorial and dynamical aspects, 269–322,
Progress in Mathematics, 248, Birkhäuser, 2005. Cited on page: 112,
114

[51] P. Massot. The sphere eversion project,
https://leanprover-community.github.io/sphere-eversion/blueprint/
Cited on page: 6, 7, 110

[52] C. McBride. A polynomial testing principle, preprint.
https://personal.cis.strath.ac.uk/conor.mcbride/PolyTest.pdf
Cited on page: 1

[53] S. Mimram. Program = Proof,
https://www.lix.polytechnique.fr/Labo/Samuel.Mimram/teaching/
INF551/course.pdf Cited on page: 10

[54] L. Moura, S. Ullrich. The Lean 4 Theorem Prover and Programming
Language. In: A. Platzer, G. Sutcliffe (eds). Automated Deduction –
CADE 28, Lecture Notes in Computer Science, 12699, Springer, 2021.
Cited on page: 4

[55] J. R. Munkres. Elements of algebraic topology, Addison-Wesley Pub-
lishing Company, 1984. Cited on page: 50

[56] J. Oprea. Applications of Lusternik-Schnirelmann category and its gen-
eralizations, J. Geom. Symmetry Phys., 36, 59–97, 2014. Cited on
page: 110

https://leanprover-community.github.io/lean-web-editor/#code=import%20tactic%20--%20standard%20proof%20tactics%0A%0Alemma%20binomial_solution%20%0A%20%20%20%20%20%20%28x%20%3A%20%E2%84%A4%29%0A%20%20%20%20%3A%20x%5E2%20-%202%20*%20x%20%2B%201%20%3D%200%20%E2%86%94%20x%20%3D%201%0A%3A%3D%0Abegin%0A%20%20--%20We%20show%20both%20implications%20individually%0A%0A%20%20have%20one_is_solution%20%3A%20x%20%3D%201%20%E2%86%92%20x%5E2%20-%202%20*%20x%20%2B%201%20%3D%200%2C%20from%0A%20%20begin%0A%20%20%20%20assume%20x_is_1%20%3A%20x%20%3D%201%2C%0A%20%20%20%20show%20x%5E2%20-%202%20*%20x%20%2B%201%20%3D%200%2C%20%0A%20%20%20%20%20%20%20%20%20by%20%7Brw%20%5Bx_is_1%5D%2C%20ring%7D%2C%0A%20%20end%2C%0A%0A%20%20have%20solution_is_one%20%3A%20x%5E2%20-%202%20*%20x%20%2B%201%20%3D%200%20%E2%86%92%20x%20%3D%201%2C%20from%0A%20%20begin%20%0A%20%20%20%20assume%20x_is_solution%20%3A%20x%5E2%20-%202%20*%20x%20%2B%201%20%3D%200%2C%0A%20%20%20%20--%20nlinarith%20solves%20this%20right%20away%2C%20%0A%20%20%20%20--%20but%20we%20give%20a%20human-readable%20proof%0A%0A%20%20%20%20have%20xminus1_squared_is_0%20%3A%20%28x-1%29%5E2%20%3D%200%2C%20by%20%0A%20%20%20%20calc%20%28x-1%29%5E2%20%3D%20x%5E2%20-%202%20*%20x%20%2B%201%20%3A%20by%20ring_nf%0A%20%20%20%20%20%20%20%20%20%20%20%20%20...%20%3D%200%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3A%20by%20exact%20x_is_solution%2C%0A%0A%20%20%20%20have%20xminus1_is_0%20%3A%20x%20-%201%20%3D%200%2C%20%0A%20%20%20%20%20%20%20%20%20by%20exact%20pow_eq_zero%20xminus1_squared_is_0%2C%0A%0A%20%20%20%20calc%20x%20%3D%20x%20-%201%20%2B%201%20%3A%20by%20ring%0A%20%20%20%20%20%20%20...%20%3D%201%20%20%20%20%20%20%20%20%20%3A%20by%20%7Brw%5Bxminus1_is_0%5D%2C%20ring%7D%2C%0A%20%20end%2C%0A%0A%20%20show%20_%2C%20by%20exact%20%7Bmp%20%20%3A%3D%20solution_is_one%2C%20%0A%20mpr%20%3A%3D%20one_is_solution%7D%2C%0Aend
https://loeh.app.uni-regensburg.de/mapa/intro_example.lean
https://loeh.app.uni-regensburg.de/mapa/intro_example.lean
https://gitlab.com/polywuisch/mapa_notes
https://leanprover-community.github.io/sphere-eversion/blueprint/
https://personal.cis.strath.ac.uk/conor.mcbride/PolyTest.pdf
https://www.lix.polytechnique.fr/Labo/Samuel.Mimram/teaching/INF551/course.pdf
https://www.lix.polytechnique.fr/Labo/Samuel.Mimram/teaching/INF551/course.pdf

140 Bibliography

[57] T. Nipkow, L. C. Paulson, M. Wenzel. Isabelle/HOL. A Proof Assistant
for Higher-Logic, 2020.
https://isabelle.in.tum.de/doc/tutorial.pdf Cited on page: 7

[58] A. L. T. Paterson. Amenability, Mathematical Surveys and Mono-
graphs, 29, AMS, 1988. Cited on page: 111

[59] B. Pierce (ed.). Advanced Topics in Types and Programming Languages,
MIT Press, 2004. Cited on page: 9

[60] R. Sauer. Amenable covers, volume and L2-Betti numbers of aspherical
manifolds, J. Reine Angew. Math., 636, 47–92, 2009. Cited on page: 113

[61] R. Sauer. Volume and homology growth of aspherical manifolds, Geom.
Topol., 20, 1035–1059, 2016. Cited on page: 113

[62] S. Smale. On the topology of algorithms. I, J. Complexity, 3(2), 81–89,
1987. Cited on page: 110

[63] P. Wadler, S. Blott. How to make ad-hoc polymorphism less ad
hoc. 16’th Symposium on Principles of Programming Languages, ACM
Press, 1989. Cited on page: 9

[64] F. Wiedijk. Formalizing 100 Theorems.
https://www.cs.ru.nl/∼freek/100/ Cited on page: 6

[65] The Xena project, https://xenaproject.wordpress.com/
Cited on page: 6, 7

https://isabelle.in.tum.de/doc/tutorial.pdf
https://www.cs.ru.nl/~freek/100/
https://xenaproject.wordpress.com/

Index

A

abstraction, 95, 113
additivity of the Euler character-

istic, 82
admissible family, 115
amenable open cover, 111
argument

implicit, 23
type class, 36

B

bijective, 20
bounded cohomology, 98, 111
Brouwer fixed point theorem, 134
bundled object, 99

C

category
bundled objects, 99
functors, 99
isomorphisms, 99
morphisms, 99
notation, 99
of simplicial complexes, 91

classifying map, 114

classifying space, 112, 114
formalisation, 120

coercion, 69
commutative diagram

formalisation, 124
commutator, 35

formalisation, 36
corner cases, 41
cover, 110

amenable, 111
lifted, 111
multiplicity bound, 111, 115,

117, 129, 132
nerve, 90, 111

cube, 91
Curry–Howard isomorphism, 10
cutting corners, 49
cyclic group, 45
cylinder, 70, 75

D

dependency graph, 134
dependent product, 9
dependent sum, 9
dependent types, 9
design choices, 47

142 Index

dim-vanishing functor, 115
dimension

formalisation, 54
generating a simplicial com-

plex, 91
of a simplex, 52
of a simplicial complex, 52

direct formalisation, 96

E

equality, 9
for types in Prop, 9
of sets, 48

Euler characteristic, 81, 82
additivity, 82
estimate, 92
formalisation, 83
isomorphisms, 92
of a union, 82
reorganisation, 81

evaluation, 49
examples, 49
extensional equality, 48

F

family
admissible, 115
classifying space, 112, 114
of subgroups, 112

Fermat’s theorem
last, 16
little, 16

finite simplicial complex, 65
formalisation, 65

formalisation, see Lean
abstraction, 113
challenge, 134
commutative diagram, 124
design choices, 47
direct, 96
indirect, 110, 118
library, 87
quotient, 89

substructure, 88
universal property, 120

foundations, 7
function type, 8
functor

dim-vanishing, 115
representable, 97

functorial semi-norm, 96
formalisation, 98
on representable functors, 97
weak flexibility, 97

fundamental theorem of algebra,
134

G

generating a simplicial complex, 70
dimension, 91
formalisation, 73
simplicial map, 91

geometric sum, 29
graph, 50
group, 36

commutator, 35
cyclic, 45
powers, 45

H

hierarchy, 49
homogeneous semi-norm, 96

I

identity map, 44
implicit argument, 23, 36
indirect formalisation, 110, 118

abstraction, 113
induction, 29

formalisation, 30
inductive type, 8
injective, 20
instance, 36
intersection of simplicial complexes,

77

Index 143

formalisation, 78
isomorphism

Curry–Howard, 10
simplicial, 57, 64
type, 99

K

Klein bottle, 72, 75

L

Lean, 5
axiom, 120
basic examples, 19
bijective, 22
categories and functors, 99
commutative diagram, 124
commutator, 36
constant, 120
corner cases, 41
dependent types, 9
dimension, 52
Euler characteristic, 83
finite simplicial complexes, 65
function types, 8
generating simplicial complexes,

73
identity map, 44
implicit argument, 23
induction, 30
inductive types, 8
injective, 22
intersection of simplicial com-

plexes, 78
limits, 42
maps, 22
proofs, 10
prototyping, 87
protoyping, 118
real numbers, 38
real zero, 38, 39, 42
record types, 8
set, 48
simplicial complex, 52

simplicial map, 58
sum, 32
surjective, 22
tactic, 14
tactic mode, 10
terminal object, 120
type class, 9, 36, 132
type class instance, 36
type class, extensible, 36, 132
typed set, 48
types, 8
union of simplicial complexes,

78
universal property, 120
vocabulary, 13

library, 87
lifted cover, 111
limit

formalisation, 42
line, 51, 90
Lusternik-Schnirelmann multiplic-

ity, 110

M

manifold
weakly flexible, 98

map
bijective, 20
formalisation, 22
injective, 20
simplicial, 56
surjective, 20

Möbius strip, 71, 75
modus ponens, 10
morphisms, 99
multiplicity bound, 111, 115, 117

formalisation, 118, 129, 132

N

nerve, 90, 111
formalisation, 123

non-terminal simp, 29

144 Index

O

octahedron, 71, 75
open cover, 110

P

pair type, 8
parity, 81, 84
Peano axioms, 31
Pi, 9
powers in groups, 45
projective plane, 72, 75
proof, 10
proof assistant, 5, 6
proof irrelevance, 10
Prop, 9
property

vs. structure, 48
propositional extensionality, 9
prototyping, 95, 118
pudding, see proof

Q

quotient, 89
setoid, 89

R

real numbers
formalisation, 39

record type, 8
extension, 132

representable functor, 97
Riemann hypothesis, 134
Rips complex, 90

S

semi-norm, 96
functorial, 96
homogeneous, 96

set
extensionality, 48
finite, 52

selection predicate, 48
typed, 48
vs. type, 48

setoid, 89
Sigma, 9
simp, 29
simplex, 51

dimension, 52
simplicial complex, 50, 51

category, 57, 91
constant map, 58
cube, 91
cylinder, 70, 75
dimension, 52
empty, 51
Euler characteristic, 81, 82
examples, 70, 75
finite, 65
finiteness, 65, 66
formalisation, 52
generation, 70
identity map, 57
informally, 50
intersection, 76, 77
isomorphism, 57
Klein bottle, 72, 75
line, 51, 90
Möbius strip, 71, 75
nerve, 90
octahedron, 71, 75
projective plane, 72, 75
Rips complex, 90
simplex, 51
simplicial map, 56
simplicial sphere, 73, 75
single vertex, 91
standard simplex, 51
subcomplex, 90
torus, 71, 75
union, 76, 77
vertices, 51, 53
wedge, 93
zigzag, 77

simplicial isomorphism, 57, 64
Euler characteristic, 92

Index 145

simplicial map, 56
composition, 57
constant, 58
formalisation, 58
identity, 57
isomorphism, 57
via generators, 91

simplicial sphere, 73, 75
simplicial volume, 98
simplifier, 29
sorry, 119
sphere, 73, 75
standard simplex, 51, 53

dimension, 52
structure

vs. property, 48
subcomplex, 90
substructure, 88
sum, 29, 45

formalisation, 32
surjective, 20

T

tactic, 14, 88
tactic mode, 10
terminal object

formalisation, 120
theorem

Brouwer fixed point theorem,
134

Curry–Howard isomorphism, 10
Fermat, 16
fundamental theorem of alge-

bra, 134
torus, 71, 75
type, 8

dependent, 9
dependent product, 9
dependent sum, 9
function type, 8
hierarchy, 9
inductive, 8
of functors, 99
of isomorphisms, 99

of morphisms, 99
pair type, 8
quotient, 89
record, 8
vs. set, 48

Type, 9
type class, 9, 36, 132

extensible, 36, 132
instance, 36, 69

typed set, 48

U

union of simplicial complexes, 77
formalisation, 78

universal property
formalisation, 120

V

vertices, 51, 53

W

weakly flexible, 97
manifold, 98

wedge, 93

Z

zigzag, 77, 80, 83, 85, 92

	Introduction
	The Lean Proof Assistant
	Proof Assistants
	Foundations
	Types
	Proofs
	Exercises

	Basic Examples
	Injectivity and Surjectivity of Maps
	Pen-and-Paper
	Lean

	Induction
	Pen-and-Paper
	Lean
	Lean with Sums

	Commutators
	Pen-and-Paper
	Lean

	The Real Zero
	Pen-and-Paper
	Lean
	Lean with Limits

	Exercises

	Design Choices
	Recurring Design Options
	Types and Sets
	Structures and Properties
	Restrictive Types and Cutting Corners
	Constructing Examples and Evaluation

	Simplicial Complexes
	Pen-and-Paper
	Lean

	Simplicial Maps
	Pen-and-Paper
	Lean

	Finite Simplicial Complexes
	Pen-and-Paper
	Lean

	Generating Simplicial Complexes
	Pen-and-Paper
	Lean

	Combining Simplicial Complexes
	Pen-and-Paper
	Lean

	The Euler Characteristic
	Pen-and-Paper
	Lean

	Towards a Library
	Interaction with Other Libraries
	Completeness
	Substructures and Quotients
	Generality

	Exercises

	Abstraction and Prototyping
	Direct Formalisation: Functorial Semi-Norms
	Pen-and-Paper
	Lean

	Indirect Formalisation: Amenable Multiplicity
	Pen-and-Paper
	Abstraction
	Lean

	Exercises

	Bibliography
	Index

