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ABsTrRACT. We provide upper bounds for logarithmic torsion homology growth
and Betti number growth of groups, phrased in the language of measured group
theory.

1. INTRODUCTION

We provide new upper bounds for logarithmic torsion homology growth and Betti
number gradients along systems of finite index normal subgroups via the following
two basic principles:

@ If A “embeds” into B and B is “small”, then also A is “small”.
@ The asymptotic behaviour along finite index normal subgroups is encoded
in the dynamical system given by the profinite completion.

We apply these two principles in the setting of chain complexes over crossed prod-
uct rings and orbit equivalence relation rings associated with dynamical systems.
Typically, “embeddings” refer to chain maps that admit homotopy retractions and
“smallness” will be measured in terms of “dimensions” or “determinants” over various
rings.

The principle @ was used to prove vanishing results for L2-Betti numbers and ho-
mology gradients in the presence of amenable covers with small multiplicity [Sau09,
Saul6|. The principle @ was previously established for L2-Betti numbers [Gab02a],
rank gradients of groups [AN12], and stable integral simplicial volume [LP16,
Loh20b]. In these cases, the dynamical point of view was the key to proving novel
types of inheritance results, leading to a deeper understanding of the invariants and
concrete calculations and estimates [Gab02a, Gab00, FLPS16, FLMQ21].

Similarly, our approach provides new perspectives on calculations and estimates
for logarithmic torsion homology growth and Betti number gradients over finite
fields. We will now describe the setting and method in more detail:

1.1. Setup and dynamical sizes. Let I be a countable group. Let a: T' ~ (X, 1)
be a standard I'-action, i.e., an essentially free probability measure preserving action
on a standard Borel probability space. As coefficients, we consider Z to be Z (with
the usual norm) or a finite field (with the trivial norm). We write L*>(«, Z) for
the ZI'-module of essentially bounded measurable functions X — Z up to equality
p-almost everywhere; i.e., elements of L™ («, Z) are represented by finite Z-linear
combinations of characteristic functions on measurable subsets of X. This leads to
the crossed product ring R := L («a, Z) T of the action .

We assume that I' is of type FP,14, i.e., the trivial ZI'-module Z admits a
projective resolution that is finitely generated in degrees < n + 1.
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We fix a free ZT'-resolution C, — Z of the trivial ZI'-module Z. By elementary
homological algebra, the subsequent definitions will be independent of the choice of
the resolution of the group. On the dynamical side, we consider marked projective
augmented chain complexes over R (see Section 2 for precise definitions).

Definition 1.1 (a-embedding). In this situation, an a-embedding (up to degree n)
is a pair that consists of a marked projective augmented R-chain complex D, —
L>(a,Z) and a ZI'-chain map C, — D, up to degree n + 1 extending the in-
clusion Z — L («, Z) as constant functions. We write A, («) for the class of all
augmented complexes arising in a-embeddings up to degree n.

For every R>(-valued isomorphism invariant A of marked projective augmented
R-chain complexes, we may define
Ala) == inf A(D, - L™ (o, Z2)).
(@) (DL (@, Z))EAn (a) ( (0. 2))
For example, for n € N, we obtain the following invariants of I' ~ (X, u), still
under the assumption that I' is of type FP,, ;.

e The measured embedding dimension medimf (o) over Z in degree n: Here,
we take

A(D, - L*®(a, Z)) = dimp(Dy).

e The measured embedding volume mevol,(«) in degree n: Here, we take
Z =7 and

A(D, — L*™(e, Z)) := lognorm(97, ;).

The quantity lognorm is a crude approximation of the logarithmic deter-
minant, introduced in Section 6.

In fact, this setting also extends to the equivalence relation ring ZR over the
orbit relation R = R, = {(x,7-2) | z € X, v € T'} of @. This leads to the
same values of measured embedding dimension and of measured embedding volume
(Corollary 17.1). However, it is not clear whether one may obtain suitable orbit
equivalence invariants in this way because ZR in general might not be flat over ZT'
and because ZR ®zr Z in general is not isomorphic to L*(a, Z).

1.2. Upper bounds for gradient invariants. Let I' be a countable residually
finite group (satisfying suitable finiteness properties). If T, = (I';);er is a directed
system of finite index normal subgroups of I', we may study I'" through I', via the
residually finite point of view and the asymptotic behaviour of invariants of the
subgroups in I',: Let F' be an R>(-valued isomorphism invariant of residually finite
groups (satisfying suitable finiteness properties). Then we obtain an associated
(upper) gradient invariant via

=~ - F(Iy)
F(I',T,) ;= limsu .
( ) iel P [ Ty]

For example, for n € N and IT" of type FP,,1, we have the following invariants
of I'y:

e The (upper) Betti number gradient over Z in degree n:

~ ~ kz H,(I';; Z
(DT 2) = (v Hy (-5 2)) = limsup 2 001 2)
i€l [[': 1y

e The (upper) logarithmic torsion homology gradient in degree n:

2 - log # tors H,(L's; Z
to(I, %) = (log#tors H,( ;Z)) = lim sup og # tors H,, ( )
i€l [[: Ty
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On the dynamical side, we can consider the corresponding profinite comple-
tion f* = @iel ['/T;. Then the left translation action I' ~ f* is measure pre-
serving with respect to the Haar measure. If this action is essentially free, we are
in the dynamical setting of Section 1.1 and we can compare the gradient invariants
with dynamical invariants.

Theorem 1.2 (dynamical upper bounds; Theorem 8.1). Let n € N and let T' be
a residually finite group of type FP,1. Let (I';);er be a directed system of finite
index normal subgroups of I' with (V,c;T's = 1 (e.g., a residual chain in T' or the
system of all finite index normal subgroups). Then:

En(I‘,I‘*; Z) < medim? (I ~ f*) if Z is Z or a finite field
(I, T,) < mevol, (I ~ T,).

The proof of Theorem 1.2 relies on the fundamental observation that the subal-
gebra of cylinder sets is dense in f* with respect to the Haar measure. Therefore,
we can approximate augmented complexes over the crossed product ring R =
L*>® (f*, Z) = T with arbitrary precision by augmented complexes that only involve
single, deep enough, subgroups I';. We can then apply classical homological algebra
to interpret the embeddings as chain homotopy retracts and use standard estimates
for Betti numbers and logarithmic torsion.

On a technical level, the underlying approximation result is challenging and is
obtained through a balanced sequence of deformations and strictifications of (al-
most) chain complexes and (almost) chain maps (Section 4 and Section 5). We
thus develop a quantitative homological algebra over R. In particular, this includes
various norms on marked projective modules over R, norms for homomorphisms be-
tween such modules, and the introduction of a Gromov—Hausdorff distance between
marked projective chain complexes over R (Section 3). The proof of Theorem 1.2
is completed in Section 8.

The measured embedding dimension is also an upper bound for the L2-Betti
numbers:

Theorem 1.3 (Theorem 8.6). Letn € N, let T be a group of type FP,, 11, and let «
be a standard T'-action. Then:

b2 (') < medim” ().

1.3. Examples. As in the case of L2-Betti numbers, we can use a Rokhlin lemma
to show that amenable groups are homologically dynamically small (Section 11).
In particular, we obtain:

Theorem 1.4 (amenable groups; Theorem 11.11). Letn € N, let T be a countable
infinite amenable group of type FP, 11, and let a be a standard I'-action. Then:

medim? (o) =0 if Z is Z or a finite field
mevol, (a) = 0.
Theorem 1.2 and Theorem 1.4 refine the well-known results that amenable
residually finite groups of type FP., have vanishing Betti gradients over every
field [CG86, LLS11] and vanishing logarithmic torsion growth [KKN17] in all de-

grees.
For free groups, we obtain (Section 12.2):

Proposition 1.5 (free groups; Proposition 12.3). Let d € Nxg, let Fy be a free
group of rank d, and let « be a standard action of Fy. Let Z be Z or a finite field.
Then:

(i) For alln € N, we have mevol,(a) = 0;
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(ii) For alln € N\ {1}, we have medim? () = 0;
(iii) We have medim? (o) > d —1;
(iv) If « is the profinite completion with respect to a directed system (T';);er of

finite index normal subgroups of Fy with (\;c;T's = 1, then

medim? (o) = d — 1.

We prove estimates for amalgamated products over Z (Section 12.1). As a con-
sequence of the calculation for free groups, we may then also treat surface groups
(Section 12.3). Moreover, we obtain inheritance results for direct products with an
amenable factor (Section 13) and for finite index subgroups (Section 14).

Remark 1.6 (relation with the cheap rebuilding property). The definition of the
measured embedding dimension and the measured embedding volume as well as the
corresponding dynamical upper bounds is inspired by the work of Abért, Bergeron,
Fraczyk, and Gaboriau [ABFG25] on the cheap rebuilding property. This prop-
erty of groups implies the vanishing of both Betti number growth and logarithmic
torsion homology growth. The present authors introduced an algebraic version of
this property [LLM™|. We show that an equivariant algebraic version implies the
vanishing of medim and mevol (Section 14.2).

Via the measured embedding volume, the logarithmic torsion growth estimates
are decoupled from the homology gradient estimates. In particular, one may use the
measured embedding volume to prove vanishing of the logarithmic torsion homology
growth where previous methods are not applicable because of non-vanishing L2-
Betti numbers.

In the future, we plan to combine the algebraic techniques developed in our pre-
vious paper [LLM ™| with the dynamical approach in order to obtain bootstrapping
theorems for measured embedding dimensions and volumes.

1.4. Dynamical inheritance properties. By design, the measured embedding
dimension and the measured embedding volume are of dynamical nature. More
precisely, we establish the following concrete instances of dynamical behaviour:
e monotonicity under weak containment;
reduction to ergodic actions;
invariance under weak bounded orbit equivalence;
comparison with cost;
comparison with integral foliated simplicial volume.

As in the fixed price problem for cost and integral foliated simplicial volume, in
general, it is not clear how the measured embedding dimension/volume depend on
the underlying dynamical system. Similarly to the case of cost and integral foli-
ated simplicial volume, we show that one can always restrict to ergodic dynamical
systems (Corollary 16.4) and monotonicity under weak containment.

Theorem 1.7 (weak containment; Theorem 15.30). Letn € N, let T be a countable
group of type FP, 11, and let o, B be standard I'-actions with o < B. Then, we have

medim? (3) < medim?Z (o) if Z is Z or a finite field
mevol, (8) < mevol, (a).

In particular, for groups with property EMD* (Definition 15.7), we obtain in
combination with Theorem 1.2:

Corollary 1.8 (Corollary 16.5). Let n € N, let T be a residually finite group of
type FP, .1 that satisfies EMD™, and let o be a standard T'-action. Then

En(F,I‘*; Z) < medim? (I ~ T)< medim? (a) if Z is Z or a finite field

(I, T,) < mevol, (I ~ T) < mevol,(a).
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It is an open problem to determine how (vanishing of) homology gradients over
finite fields or torsion homology growth behaves under orbit equivalence. As a step
towards this problem, we show that measured embedding dimension and measured
embedding volume are compatible with weak bounded orbit equivalence (Defini-
tion 18.14). In particular, these invariants provide upper bounds for homology
growth over finite finite fields and for torsion homology growth that are multiplica-
tive under weak bounded orbit equivalences.

Theorem 1.9 (weak bounded orbit equivalence; Theorem 18.2). Let n € N, let T'
and A be groups of type FP, 11, and let a and B be standard actions of T' and A,
respectively, that are weakly bounded orbit equivalent of index c. Then, we have

medim? (o) = ¢- medim?(8) if Z is Z or a finite field
mevol, (a) = ¢ - mevol, (5).
We deduce a proportionality result for hyperbolic 3-manifolds:

Theorem 1.10 (Theorem 18.21). Let M and N be oriented closed connected hy-
perbolic 3-manifolds and let T' == w1 (M), A .= m(N). Then

dimZ(T ~ T dim? (A ~ A
medim{’ (' ~ ):me imy (A~ A) if Z is Z or a finite field

vol(M) vol(N)
mevol; (T ~ T) ~ mevol; (A ~ A)
vol(M) N vol(NV)

“Small” resolutions over the equivalence relation ring lead to upper bounds for the
measured embedding dimension/volume, but at the moment, the case of general
orbit equivalence is out of reach, because the equivalence relation rings do not
exhibit the same level of exactness and finiteness properties as the crossed product
rings.

Proposition 1.11 (small resolutions over the equivalence relation ring; Propo-
sition 17.2). Let Z denote Z (with the standard norm) or a finite field (with the
trivial norm). Let R be a measured standard equivalence relation on a standard
Borel probability space (X, ), let n € N, and let D, be a marked projective ZR-
resolution of L*>°(a, Z) (up to degree n+1). Then: If T is a countable group of
type FP,11 and if « is standard probability action of T on (X, u) that induces R,
then

medim? (o) < dimyg (D,,)

mevol, (a) < lognorm(dy2, ) if Z=1Z.

n

Similarly to the estimates for L2-Betti numbers via resolutions over dynami-
cal rings, we obtain upper bounds for the measured embedding dimension/volume
through cost and the integral foliated simplicial volume:

Theorem 1.12 (cost estimate; Theorem 19.1). Let T’ be an infinite group of
type FPo and let a be a standard action of I'. Then

medim? (a) < cost(a) — 1.
Theorem 1.13 (integral foliated simplicial volume estimate; Theorem 20.1). Let M

be an oriented closed connected aspherical n-manifold with fundamental group T,
let o be a standard T-action, and let k € {0,...,n}. Then

1
medim4 (o) < (Zi 1) M|

1
mevolg (o) < log(k + 2) - (Zil) M.
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The integral foliated simplicial volumes is zero for aspherical manifolds admitting
an amenable open cover of small multiplicity [LMS22]. By Theorem 1.13, in this
case also the measured embedding dimensions and volumes are zero. This applies to
many geometrically interesting situations including, e.g., aspherical manifolds with
amenable fundamental group, aspherical graph 3-manifolds and smooth aspherical
manifolds admitting a smooth circle action without fixed points (Example 20.6).
Moreover, Theorem 1.13 also provides upper bounds for the measured embedding
volumes of aspherical 3-manifolds and, more generally, for Riemannian manifolds
in terms of Riemannian volumes (Example 20.4 and Example 20.5).

1.5. Open problems and further motivation. The following beautiful result is
proved by Abért-Bergeron-Fraczyk—Gaboriau. In our previous paper |[LLM™| we
revisit this result and put it into a larger homological context.

Theorem 1.14 (JABFG25]). Let T' = SL4(Z) with d > 3. Let p be a prime. Then
t,(T,T.) = 0 and b, (T, T.;F,) = 0 for every n € {0,...,d — 2} and every residual
chain Ty of .

We also have gn(F, I's;Z) = 0 in the same range but this follows easily from
Liick’s approximation theorem and the computation of L?-Betti numbers.

Their result is more general than stated above and provides a vanishing result
for arithmetic lattices in all degress less than the Q-rank. Conjecturally, one should
be able to replace the Q-rank by the R-rank and allow for more general, Benjamini—
Schramm convergent, sequences of lattices.

Conjecture 1.15. Let G be a semisimple Lie group with finite center and without
compact factors. Let r be the R-rank of G, and assume that r > 2. Let (T';);cr be
a sequence of irreducible lattices in G whose covolumes tend to infinity. Then
tkp H,(T;;Fp) . log#tors H,(I';;Z)
im———————~-=0 and lim
iel  vol(G/I) icl vol(G/T;)
for everyn € {0,...,r — 1}.
In particular, t,(T,T,) = 0 and b (T, Ts;Fp) = 0 for every lattice T in G,
everyn € {0,...,r — 1} and every residual chain Ty of T.

=0

Some evidence comes from the following breakthrough result of Fraczyk—Mellick—
Wilkens [FMW, Theorem B] in degree 1.

Theorem 1.16 ([FMW]). Let (T';);er and G and r > 2 be as in Conjecture 1.15.
Then L H (T F
T 1(Li; Fy) —0
iel  vol(G/T;)
Part of the motivation for writing this foundational paper is the authors’ pro-
gramme to tackle the above conjecture by a dynamical-homological approach that
hopefully allows to extend the result by Abért-Bergeron-Fraczyk—Gaboriau to

other lattices (of lower Q-rank) via orbit equivalence techniques.
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Part 1. Dynamical upper bounds for homology growth

The main goal is to prove the dynamical upper bounds for Betti number gradi-
ents and logarithmic torsion homology gradients in terms of measured embedding
dimension and measured embedding volume, respectively. We first develop a frame-
work of quantitative homological algebra over rings associated with standard actions
and prove strictification and deformation results (Sections 2—-6). We then explain
the passage to finite index subgroups (Section 7) and prove the dynamical upper
bounds (Section 8).

2. BASIC NOTIONS

We recall basic notions on rings and modules associated with dynamical systems:
crossed product rings and equivalence relation rings. As we are interested in quan-
titative aspects, we will also introduce corresponding norms, sizes, and dimensions.

Setup 2.1. Let I' be a countable group. We consider a standard I'-action a: I' ~
(X, ), i.e., an essentially free measure preserving action of T on a standard Borel
probability space (X, u).

Moreover, let S be an algebra of measurable sets of X with I'- S C S.

Let Z be the ring of integers Z (with the usual absolute value) or a finite field

with the trivial norm
0 ifz=0;
T
1 ifx#0.

Remark 2.2. Most of our results can be generalised to the setting of principal
ideal domains Z with a discrete norm, i.e., a function | - |: Z — Rx¢ satisfying:

e |0 =0and |z| >1forall x € Z\ {0};

o |z +y| <|z|+|y| for all x,y € Z;

o [z-y| <|z|-|y| forall x,y € Z.
However, for simplicity, we state all results for the case Z = Z or Z being a finite
field only.

Remark 2.3. When dealing with L*°-function spaces, we take the liberty of using
pointwise notation. All corresponding notions such as equalities, defining equalities,
suprema,/infima, estimates, etc. are to be interpreted in the “almost every” sense.

2.1. Rings. We consider the following rings:

e The ring L*>(«) == L (X, u, Z) of essentially bounded measurable func-
tions X — Z up to equality almost everywhere. The I'-action on X induces
a left T'-action on L (a):

Vier=(a) Vyer 7-A:= (A" 2)).

e The subring L of L>(«) generated by S. (Every element of L is a finite
Z-linear combination of characteristic functions over members of S).

e The crossed product ring L «T' C L*(«) T, i.e., the free L-module with
basis I', endowed with the multiplication given by

A7) Ny) = (A (y - V), )
Sometimes we also write A -~ instead of (), ) for an element in the crossed
product ring.

o Let R:={(y -z,2) |z € X,y €T} C X x X be the orbit relation of «.
Let v be the non-negative measure on the Borel o-algebra of R defined by

V(A) ::/X#(Aﬂ({x}xX)) du().



10 K. LI, C. LOH, M. MORASCHINI, R. SAUER, AND M. USCHOLD

The equivalence relation ring Z'R is defined as

ZR ={X€ L®(R,v, Z) | sup #{y | Mz, y) # 0} < oo,
reX

sup #{z | A(z,y) # 0} < oo}

yeXx

equipped with the convolution product

XX (z,y) = Z Az, w) - N (w,y).

we(z]r

We have a commutative diagram of canonical inclusions of rings (because the action
of T on X is essentially free):

L®(a) —— L=(a)+D —— ZR

| | |

L — L+l «—— 7T

Under the ring inclusion L>®(«a) *T' — ZR, the element (\,y) € L*°(a) % I' corre-
sponds to the function

Ay - if v =~
(’y/ . x’ x) H (’y x) 1 ’y 77
0 otherwise.

A recurring theme will be that we need to control £'-norms or supports.

Definition 2.4. Let A: R — Z be a function. Let

Ni(\ ) X = NU{oo}
yH#{xeX})\(z,y)#O}

and N1()) = sup,cx Ni(A,y). Symmetrically, we define Na(A, -) and Na(A).

If A € ZR, then N1(\) < oo and Na(\) < 0o; per our convention in Remark 2.3,
this is interpreted in the “almost everywhere” sense.

Lemma 2.5. Let \,\' € ZR. Then

A= N1 < No(N) - [N oo - [Al1-
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Proof. We have
|)\-)\’|1:/ AN dv
R

— [ Y neNew)duto)

X
y€[z]r

= [ X2 M) Xy dua)

y€[z]r welz]r

< /X STOS Paw)l - [N (w,y)] dal)

y€[z]r welz]r

_ /X ST @)l Y N (w,y)] dp(a)

we(z]r yElr]r
< / S @ w)] - MoV, w) - [V]oo dpz)
Xwe[w]n

SSCONPINEY D DRNERRIP A

wE[z]R
:N2<A'>-|X|oo-/ Al du
R
= No(W) - [W]oo - AL 0

Definition 2.6 (support). Let A € ZR. We define (up to measure 0)
e the support of A by
supp(A) == {(z,y) € R | A(z,y) #0} C X x X
e and the 1-support of A by
supp; (A) := projy (supp(})) C X,
where proj;: X x X — X denotes the projection onto the first factor.

Remark 2.7. Let A € ZR. We have A(2,y) = Xsupp(r) (T, ¥) - Az, y) for all (x,y) €
R. Moreover, A = Xgsupp, (») - A (With respect to the convolution product); indeed,
under the inclusion L>°(a) — ZR, the element Xsupp, (n) € L™ () corresponds to
the function

Xsuppl(/\) (l‘) if Y =€

“XT,T) = Xsu cL,Tr) =
(v ) = Xsupp, (0 (Y ) {0 otherwise.

Furthermore, we have that p(supp;(A\)) < v(supp(N)) < |A|1.
Remark 2.8. For (A,7v) € L*(a) *xI' C ZR, we have:

Ni((A7))

Na((A7))

supp; ((A,7)) = 77" - supp()).

2
IN N
—_ =

Hence, in general we have N1(2§:1(Aj,7j)) < k, N2(E§:1()\ja’)’j)) < k, and
k k-
SuPP1(Zj:1()‘ja'Yj)) C Uj:l V5 ! -supp(A).
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2.2. Base changes. Using the inclusion relations between our basic rings, we can
also consider the associated base change and induction functors.

Remark 2.9. We view L*°(«) as a ZR-module via the following scalar multipli-
cation: Let ¢: L®(a) < L*(a) * ' — ZR be the canonical inclusion. We define
e: ZR — L*®(a) by
M@ = Y Aa,y)
y€lzlr
forall A\ € ZR and x € X. For all A € ZR and N € L*(«), we set
AN =X (X)) € L®(w),

where the multiplication on the right hand side is the multiplication in ZR.

More explicitly, if A C X is a measurable subset, A € L>(«), and v € T', then
this action amounts to (X\,7) x4 = A- X~.4, where multiplication on the right hand
side is the usual pointwise multiplication of L°°-functions.

Proposition 2.10. The modules L>®(«) T and LT are flat over ZT.

Proof. For a ZT'-module M, there is a canonical isomorphism
(L>(o) % T) @zr M =27 L™ (o) @7 M.

The claim follows because L™ («) is flat over Z: If Z is a finite field, then this is
clear. If Z is Z, then it is also known that L°°(«) is free abelian [Ste85]. For L, the
same argument applies. O

Remark 2.11. In general, the module ZR might not be flat over the group ring ZT".

2.3. Modules. We will mainly be interested in a simple type of projective modules
and the base ring L>(«) « T

Setup 2.12. Let L be the subring of L>°(a) generated by S and let R be an
L-subalgebra of ZR, e.g., one of the rings L>®(«), L>(a) *T', or ZR.

Definition 2.13 (marked projective module). A marked projective R-module is a
triple (M, (A;)icr,®), consisting of
e an R-module M,
e a finite family (A4;);es of measurable subsets of X, and
e an R-isomorphism ¢: M — @,.; R- x4,
In the following, we will abbreviate
<Az> =R- XA;-
The dimension of the marked projective R-module (M, (A;):cr,p) is given by
dim(M) = Z,u(AZ—) € R>o.
iel
To simplify notation, we will leave ¢ implicit and call a description as above a
marked presentation. Then, rk(M) = #I is the rank of this marked presentation.

Finiteness is built into this definition of marked projective modules as this is the
only case that we will consider.

Definition 2.14 (marked homomorphism). Let f: M — N be an R-homomorphism
between marked projective R-modules and let M = P, ; (4:), N = @D, ; (B;) be
the marked presentations. We say that f is
e a marked inclusion if there exists an injective function o: I — J such that
Ai C Bo(iy and f(xa, - €i) = XA, * XB,) * €o(i)}
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e a marked projection if there exists an injective function 7: J — I such that
Bj C A.,.(j) and

XA; *XB 1, " €r71(i) if i € im(7);
L6 ) =
Thea e {0 otherwise;

e a marked R-homomorphism if f is a composition of marked inclusions and
marked projections.

Remark 2.15 (canonical hull/complement, canonical inclusion, canonical projec-
tion). Marked projective modules are projective R-modules, as witnessed by the
projections R — R of the form A — X\ - xa4,.

More precisely: Let M = @,.;(A;) be a marked projective R-module. Then
the canonical hull of M is F' := @; R. The marked inclusion M — F' is the
canonical inclusion. The R-linear marked projection F' — M given on the standard
basis (e;)ier by

€ > XA; €

is the canonical projection to M. We call
M= (X \ A)
il
the canonical complement of M. By construction, the canonical inclusions and
projections of M and M’ combine into an isomorphism M @& M’ =g F.

Definition 2.16 (support). Let M = ,.;(A;) be a marked projective R-module.
For z =) ,c; Ai - xa, - € € M, we define the supports of z by

supp(z) = U supp(A; - x4,) C X x X
il
supp; (z) = U supp; (A - x4,) C X.

=
Remark 2.17. Let M be a marked projective R-module, let z € M, and let
B :=supp,(z) C X. Then

XX\B -z =0.
Indeed, xp-z = z (which follows from Remark 2.7) and so xx\p-2 = Xx2—XB"%2 =
z—z=0.

Remark 2.18 (defining homomorphisms out of marked projective modules). Let
M = @,;c;(Ai) be a marked projective R-module. Let A C X be a measurable
subset and let z € M with supp,(z) C A. By Remark 2.7 we have z = Xqupp, (z) * 2-
Hence,

fi(A) =M
Aexarr Az

is a well-defined R-homomorphism: Indeed, 1 + z describes a well-defined R-homo-
morphism f: R — M and supp,(z) C A shows that

FOvxa)=Axa ) =Aoxa-z= A
holds for all A € R. Therefore, f is obtained from f by composition with the
canonical inclusion (4) — R.

If A)BC X and f: (A) — (B) is an R-homomorphism, then f is given by right
multiplication with z € R and evaluation at x 4 shows that we may choose z always
in such a way that supp(z) C A x B.
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2.4. Chain complexes. The main objects will be chain complexes consisting of
marked projective modules. We continue to work in Setup 2.12.

Definition 2.19 (marked projective chain complex). A marked projective R-chain
complez is a pair (D, n), consisting of

e an R-chain complex D, of marked projective R-modules and

e a surjective R-homomorphism 7n: Dy — L (), called augmentation.
We also write n: D, — L*°(«) for such a marked projective R-chain complex.

An R-chain map between marked projective R-chain complexes is an R-chain

map between the underlying chain complexes that is compatible with the augmen-
tations. A chain map extends idp(q) if the map in degree —1 is id e (q)-

Remark 2.20. Marked projective R-chain complexes admit canonical inclusions
and projections into/from free R-chain complexes.

Remark 2.21 (induction of resolutions). Let R contain L % I" and let (Cy, () be
a free ZT'-resolution of the trivial ZI'-module Z. Let r € N. Choosing a ZT'-basis
of C., we can view Indgr C, = RQr«r L ®z C, as a marked projective R-module
(possibly of infinite type). Hence, applying the functor Indg‘F = RQp«sr L ®z -
to (Ck, ) leads to a marked projective R-chain complex (possibly of infinite type
in each degree). In such situations, we will always consider this marked structure.
In particular, also norms of elements and homomorphisms are interpreted in this
way.

2.5. Norms. We use the ¢!-norm to measure the size of elements in marked pro-
jective modules and consider the associated operator norm for homomorphisms
between marked projective modules. We continue to work in Setup 2.12.

Definition 2.22. Let M = @,.;(A;) be a marked projective R-module. Then M
carries the norm || - ||1, inherited from the corresponding “norm”

I-1l: DR —Rso

on the canonical hull of M.

Definition 2.23. Let f: M — N be an R-homomorphism between marked pro-
jective R-modules. Then the norm || f|| of f is the least real number ¢ with

Veenr [|[F2)|, < ezl

Remark 2.24. All R-homomorphisms f: M — N between marked projective R-
modules have finite norm: Because the marked presentations are compatible with
the ¢!'-norms, it suffices to show that maps of the form f: R — R, z + z - \ for
some A € R have finite norm: Let z € R. Then, by Lemma 2.5,

£y =1z FWl = Iz Ally < N2 - [Alos - 121
and hence
11 < N2(A) - [ oo

By definition of ZR (which contains R), we know that |A|s and Na(X) are indeed
finite. However, one should note that in general this norm of f cannot be controlled
directly in terms of |A|;. In particular, to compute norms of R-maps, it will in
general not be sufficient to just compute the £'-norms of the values on the canonical
basis. This will cause some unpleasant detours later on. An alternative description
of the operator norm is provided in Section 2.7.



THE CHEAP EMBEDDING PRINCIPLE 15

In order to generalise the estimate from Remark 2.24 to homomorphisms between
general marked projective modules, we introduce the following additional norm on
homomorphisms. The said generalisation will be given in Lemma 2.31.

Definition 2.25. Let f: M — N be an R-homomorphism between marked pro-
jective R-modules M = P, (A;) and N = P, ;(B;). We set

I flloo = @ ?)?IXXJ |)‘ij ) XB]-‘om

where (Xij) @i j)erxs € Mrxs(R) is the matrix that describes f (through right mul-
tiplication by this matrix).
Similarly, if n: M — L*°(«) is an R-homomorphism, we set

1700 = max n(xa, - €:)lco-

2.6. Support and size estimates. In order to handle the deformation and stric-
tification of elements and homomorphisms, we use l-supports and 1-sizes. We
continue to work in Setup 2.12.

Remark 2.26. If M is a marked projective R-module and z € M, then (Re-
mark 2.7)
pu(supp; (2)) < v(supp(z)) < ||z}
However, in general, such norm estimates will be too coarse. Therefore, we
introduce the following size notions:
Definition 2.27 (size). Let M = ,.;(A;) be a marked projective R-module.
o If z € M, we abbreviate

size (z) == p(supp, (2)) € [0,1].
If 2=3,c; \i - xa, - €, we write
Ni(z) = Ni(Xi-xa,) €N
el
|2lo0 = D 1A - Xasloo € Rx0.
iel
e If NV is a marked projective R-module and f: M — N is an R-homomorphism,
we set

size; f == Zsizel(f(XAi -e;)) € R>g
icl

Ni(f) =D Ni(f(xa, -e:)) €N
iel

N, (f) = max N1 (f(xa, -e))) € N.

Clearly, N,(f) < Ni(f) < rk(M) - N,(f). Similarly, we define Na(f)
and No(f).

Remark 2.28. Let f: M — N be a marked R-homomorphism (Definition 2.14)
between marked projective R-modules and let z € M. Then,

Ni(f(2)) < Ni(2),  Na(f(2)) < Na(2), and [f(2)]oo < |2]oc-
Lemma 2.29 (support estimates). Let f: M — N be an R-homomorphism between
marked projective R-modules M and N and let z € M.
(i) For all X € R, we have size; (A - z) < Ni(A) - sizey(2);

(ii) supp;(f(z)) C suppy(2);
(iil) size1(f(z)) < Ni(z) - size1(f);
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(iv) Letg: L — M be an R-homomorphism between marked projective R-modules.
Then sizeq (f o g) < N1(g) - size1 (f);

(v) Let g: L — M be a marked R-homomorphism between marked projective
R-modules. Then size1(f o g) < size1(f).

Proof. Let M = @, ;(A;) be the marked presentation of M and z = Y, _; Ai-xa,-€;
with \; € R.

(i) Let A :==supp(A\) C X x X and B :=supp,(z) C X. If x € supp; (A~ z), then
by definition of the convolution product there exists a w € [z]g with (z,w) € A
and w € B. Therefore,

sizer (A - z) = p(supp; (A - 2)) < p({z e X | AN proj; H(B) N{z} x X # 0})
< [ #(anproi; (B)n {x} x X) du(a)
X
=v(An proj, ' (B)).
As v can also be computed through proj,, we obtain
sizei (A - 2) < v(A N proj; '(B))
= [ #(Anproiz (B) N X x {3}) duty)

= [ #(An X (o)) auty)
< Ni1(A) - u(B) (because A = supp()))
= N1 () - sizeq(2).
(ii) We compute
supp; (f(2)) = suppy (f (Xsupp, =  2)) = SuPPy (Xsupp, = * £(2)) C supp; (2).
(iii) We use part (i):

sizeq (f(z)) = sizey (Z i fxa, - ei))

el

= p <supp1 (; Xi - f(xa, - 6z’>)>
< Zju<supp1 (N fxa, - 60))

i€
= ;M<Supp1 (N - xa, - Fxa, ei))> (by Remark 2.18)
= isizm ()\7; XA, - flxai- ei))
giMWxMﬂmwmmm (by part (i))

i€

< Ni(z) - sizer (f).
(iv) Let L = @, ; (B;) be the marked presentation of L. We have

sizer (f o g) = Z sizey (f(9(xB, - €;)))

JjeJ

< Ni(g(xs, - €))) - sizer (f) (by part (iii))

= Ni(g) - size1(f).
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(v) By adding trivial summands to the marked presentations, we may assume
that the marked R-homomorphism g is of the form

o L=@ B~ P ) =,
il il
9(XB; - €i) = XB; * XA, " €i-
We have
sizey (f o g) = ;sizm (flalxs, - e:))

= ;sizel (f(xB. - xa, - &)

= EZISizel (x5, - f(xa, - i)

< 2; Ni(xs,) -size1 (f(xa, - €i)) (by part (i))
< Zezlsizel (f(xa, €))

ic

= size1 (f).
This completes the proof. O

Lemma 2.30. Let M = @, ;(Ai) be a marked projective R-module and let n: M —
L>(a) be an R-homomorphism. Let z € M. Then,

[1(2)]o0 < Na(2) - [2]oo - [|1]]co-

Proof. Without loss of generality, we may assume that M = (A). Since 7 is R-linear
and by Remark 2.9, we have

n(2) (@) = (z-nlxa-e) @) = Y z(@y) nlxa-e)y).
yE[z]r
Thus,
n()e = sup| 37 2(x.4) - nlxa-e)v)
PEX yelaln

Ssu‘ z(x, ‘ 0
sup > 2wyl

yElz]r
< sup Na(2,7) - [2]oo - 1|0
rxeX
= Na2(2) - |2|oo - [In]loo- O

Lemma 2.31 (norm estimate). Let f: M — N be an R-homomorphism between
marked projective R-modules. Then

1< No(f) - [1flloo-
We abbreviate Ky == No(f) - || f]lco-

Proof. This is a straightforward calculation: Let (Ai;)(i j)erxs be the matrix de-
scribing f (through right multiplication by this matrix). Let z € M, written
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as 2 =) ;. Ai - X4, - €. Then we obtain

HOIRDYS

> XA A X,

jeJ lier 1
<D A xac A xssh
jed iel
<D Na(Nij - xB,) < 1N X8y e - [Xi - xaLh (Lemma 2.5)
il jeJ
<l (M2 (X A, 5) - I
iel jeJ
1l (3 M, ) -
el
< No(f) - [1flloo - [l21]15
which shows that || f]| < No(f) - || co- O

Remark 2.32. Let A C X be measurable, let A € R with supp;()\) C A, and let
f: (A) = R be the R-homomorphism given by right multiplication with A\. Then

[flloc = [Aloc and  Na(f) = No(f) = Na(A).

Remark 2.33. Let f: M — N be a marked R-homomorphism between marked
projective R-modules, i.e., a composition of marked inclusions and marked projec-
tions. Then

Ni(f)<1, No(f) <1, |fllee <1, |Ifl <1

2.7. An explicit description of the operator norm. We provide an explicit
description of the operator norm for homomorphisms between marked projective
modules.

Setup 2.34. Let a: ' ~ (X, ) be a standard action of a countable group and
let R := L>(a) I be the crossed product ring. Let f: D,c;(A4i) = D, ,(B;) be
an R-linear map. Then, f is given by right multiplication with a matrix z := (Z”)u
over the crossed product ring. There is a finite family (Uy)gex of pairwise disjoint
measurable subsets of X and a finite subset F' C I such that for all 1 € I,j € J,
we have
Zij = Z i gky - (XU ),
(k,y)EKXF
where a; j 1~ € Z.
Moreover, we call such a presentation reduced if foralli € I,j € JJ ke K,v€e F

with a; j . 7 0, the following hold:

(1) Uk C Bj;

(2) ’VUk C A;.
Note that in particular, this implies that v~ '4; N U, = Uy, C Bj. 1t is straightfor-
ward to verify that we can always find a reduced presentation.

Proposition 2.35. In the situation of Setup 2.84, let f: M — N be an R-
homomorphism between marked projective R-modules. Let z be the matriz rep-
resenting f as in Setup 2.34. Then,

Ifll = malxmax{ Z | gy ’ L C K x F with ,u( ﬂ *yUk) > O}.
' je (k€L (ky)€EL

In particular, we have || f|| € N.
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As a first step, we show that we can restrict to modules of the form L (A).

Lemma 2.36. Let A C X and f: (A) — N be an R-homomorphism between
marked projective R-modules. Then,

I = 1o cayll-

Here, f|po(a) denotes the precomposition of f with the canonical inclusion L>°(A) <

Proof. For v € ', we define f,: L>°(A) — N by
F1lg) = F((xx, ) - (9:1).-
By definition of the norm as an ¢!-norm over the L>°(A)-summands, it is clear that
[fI]' = sup [|f5]]-
yel’
It thus suffices to show that for v € T, we have || f,| < || fi]|. Indeed, because f is
R-linear, for all g € L*°(A), we have

155 @)l = [|£(Oexam) - (g, 1)l
= || (xx,7) - flg, D),

= [f((g, 1))

< If1ll - Igl,
where in the penultimate step, we use that multiplication with (xx,~) defines an
isometry because the action of v preserves the probability measure p. O

As a second step, we compute the value of the homomorphism f on specific small
building blocks:

Lemma 2.37. Let f: (A) — (B) be an R-homomorphism, given as in Setup 2.34
by right multiplication with

Z = Z Ak~ * (X”yUka,Y)7
(k,y)EKXF

where ay € Z, F C T is a finite set, and (U )kek are pairwise disjoint measurable
subsets of B with vU, C A whenever ay , # 0 (see Remark 2.18). For L C K x F,
we define
UL = () w0 () AW
(k,y)eL (k,y)e(KxF)\L
Then, the (U(L))pcxxF are pairwise disjoint subsets of A and

f((xvwy,1) = Z ak - (Xu() ),

yel’
where
0 if U(L) = 0;
afﬁ = ag~ if there exists k € K with (k,v) € L;
0 otherwise.

Because the Uy, are pairwise disjoint, there is at most one k € K with (k,v) € L
unless U(L) = 0.

Proof. By construction, the U(L) are pairwise disjoint and for (k,v) € K x F, we
have
U(L) if (k,v) € L;

(2.1) U(L) N U, = {® o) 2L
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Thus, with Equation (2.1), we obtain

F(wey D) = 0wap D Y. ary (o)
(k,y)EKXF

= Z Ak~ - (XU(L)mUk,V)
(k,v)EKXF

= Z ak,'y'(XU(L)a'Y)

(k,y)EL

= Z a’f,'y : (XU(L))W) U
~el’

Proof of Proposition 2.35. Because the operator norm is defined with respect to
the /!-norm on M, we may assume without loss of generality that M = (A). We
will therefore drop the index 4 from the notation. Let m be the maximum on the
right hand side of the claim. In order to prove that || f|| > m, let L,, C K x F be
a maximal subset realising the maximum, i.e.,

m= Z laj i~ and ,u( ﬂ ’yUk>>0.

jeJ,(k,y)ELm (k,v)ELm

Then, also p(U(L,,)) > 0, by maximality of L,,. We consider the characteristic
function = == (xy(z,,), 1) as a witness and compute

1F@)h =1 v

JjeJ

= Z Z aﬁ;’i7 “(XU(Lm)» ) (Lemma 2.37)
jeJ 'verl 1

=33 ayr |- p(U(Lm))

jeJ vel

=m-|z|;.

Since |z|; = (U (L)) > 0, this proves that || f|| > m.
To show the converse inequality, we use the canonical R-isomorphism

(= P ),

LCKXF

where U(L) is defined as in Lemma 2.37. Equipping the right hand side with the £-
norms of the summands, the canonical isomorphism of R-modules is an isometry.
Thus, it suffices to prove that |f(z)|1 < m-|z|; for z € (U(L)). By Lemma 2.36, it
suffices to consider g € L>(U(L)). We can write

g:ZQS'XVs

seS
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for a finite set S, gs € Z, and pairwise disjoint subsets V; of U(L). The calculation
in Lemma 2.37 shows that

HOTES RO

jeJ
= Z Zaﬁ*,v ) ng - (Xv.,7)
jeJ 'vel ses 1
< (XX lahsl) -l
jeJ yel

The notion of S-adapted modules and morphisms used below will be introduced
later (Definition 5.2).

Corollary 2.38 (adaptation with the same norm). Let f: M — N be an S-adapted
morphism between marked projective R-modules. Let M’ be a marked projective
summand of M. Then, there exists a marked projective summand M" of M that is
S-adapted such that

M c M and ||flar |l = [ f sl

Proof. As it suffices to prove the claim componentwise in the domain, suppose
that M = (A) and M’ = (A’) with A’ C A. Set

A= U U(L),
LCKXF s.t.
w(A'NU(L))>0
where U(L) is defined as in Lemma 2.37.
Then, since f is S-adapted, so is M" := (A”) and M" contains (A’). Moreover,
by the explicit description of the norm (Proposition 2.35), we have || f|a || = || f]as ]|
as the maximum ranges over the same sums of coefficients. O

3. ALMOST EQUALITY

We introduce quantitative notions of “almost equality” for homomorphisms be-
tween marked projective modules and marked projective chain complexes. Almost
equality for homomorphisms requires that the homomorphisms are equal except
on a marked summand of small dimension and that the norm on this exceptional
summand is uniformly controlled. For the comparison of homomorphisms with
different domains/targets, we introduce a controlled Gromov-Hausdorff distance.
This admits a straightforward generalisation to chain complexes. In particular, we
will be able to speak of marked projective chain complexes that are “almost equal”.

Setup 3.1. Let ' be a countable group and let Z denote Z (with the usual norm)
or a finite field (with the trivial norm). We consider a standard T-action a: T’ ~
(X, u). Moreover, let R be the associated orbit relation, and let R C ZR be a
subring that contains L (a, Z) x .

3.1. Almost equality. We begin with a notion of almost equality that only re-
quires the homomorphisms to be equal except on a marked summand of small
dimension.

Definition 3.2 (marked decomposition, almost equality). In Setup 3.1, let M =
P, (Ai) be a marked projective R-module.
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A marked decomposition of M is the canonical R-isomorphism
M =g @(Az \ Bi> &5 ®<Bz>
iel iel
induced by a family (B;);cs of (possibly empty) measurable sets B; C A;.
Let 6 € Ryg and let f, f': M — N be R-homomorphisms between marked

projective R-modules. We write f =5 f’ if there exists a marked decompo-
sition M =g My & M; with

f|M0 = f’|M0 and dlm(Ml) < 6

If 2,2’ € R, then we write z =5 2’ if u(supp,(z — 2’)) < é.
If z,2" € L*>(«), then we write z =5 2’ if u(supp(z — 2’)) < 6.

Example 3.3. Let y € ['and U,V C X be measurable subsets. Let fi7, fy: R - R
be the R-linear maps given by right multiplication with (x~v,v) and (x+v,7),
respectively. Set 0 := pu(U A V), where A denotes the symmetric difference. Then,
Ju=s fv.

Remark 3.4. Let M be a marked projective R-module. The notion of almost
equality can also be defined in the same way for R-linear maps M — L*°(«). The
following lemmas hold for such maps to L*(«) in an analogous way.

Lemma 3.5. In the situation of Setup 3.1, let f, f': M — N be R-homomorphisms
between marked projective R-modules and let 6 € Rsg. Then,

f=sf < size;(f—f') <.

Proof. Let M = @,.;(A;) be the marked presentation of M.
We first assume that f =5 f'. Let M =g @, ,(A: \ Bi) © @P,c,(Bi) be a
corresponding marked decomposition. In particular, we have (f — f')(xa, - €;) =

(f = f)(xB, - e;) for all i € I. Then, we obtain
size;(f — f) = Zsizel((f - (xB: - e))

iel

< sizer (xs, - €) (Lemma 2.29 (ii))
iel

=S u(B) = dim(@<3i>) <6
el el

Conversely, let size; (f — f') < 6. For i € I, we set B; := supp; ((f — f")(xa, -€:))-

We consider
My = EP(A;\ B;) and M = (B;).
il i€l
Then My @ M, is a marked decomposition of M. Because of size; (f — f/) < § and
the definition of B;, we have

dim M; = ZN(Bi) = Zsizel((f — ) (xa, - €)) =sizey (f — f) < 6.
el i€l
Moreover, by construction,
f(xanB: - €) = f'(Xa\B, - €)
for all 4 € I (Remark 2.17). Hence, f|a, = /|- O
Lemma 3.6. In the situation of Setup 3.1, let L, M, N be marked projective R-
modules, let f, f': M — N be R-homomorphisms, and let 6,0 € Rsg. We assume
that f =5 f’.
(i) If f": M — N is an R-homomorphism with ' =5 f", then f =515 f".
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(ii) If h: N — L is an R-homomorphism, then
hof=shof.
(i) If g: L — M is an R-homomorphism, then
feg=nygs f o9
iv g: L — 1s a marked R-homomorphism, then
iv) Ifg: L—- M ked R-h h h
fog=sfog.
v ,9 L — are R-homomorphisms with g =5 g', then
Ifg,g: L—>M R-h h h g g, th
fog=nygs+s ['o9g"
vi g,9 : — are R-homomorphisms with g =5 g, then
) Ifg,g: M — N R-h hi ith " th
f+g=srs f'+9

Proof. Parts (i), (ii) and (vi) are immediate from the definition. Parts (iii) and (iv)
follow from the characterisation in Lemma 3.5 and the estimate in Lemma 2.29 (iv)
and (v), respectively. Part (v) follows from parts (i), (ii), and (iii). O

We obtain the following consequences.

Lemma 3.7. Let M = @,.; M; and N = EBjEJ N; be marked projective R-
modules. Let f,g: M — N be R-homomorphisms. For i € I and j € J, let
fijGi5: My — N; denote the restrictions to the specified summands in the domain
and codomain. Let § € Rsqo such that for alli € I,j € J, we have f;; =5 gi ;.

Then, we have f =xr.45.5 9.
Proof. This follows directly from Lemma 3.6. O

Lemma 3.8. Let §,8' € Rwq and let the following be a diagram of projective R-
modules:

M g1 M/ fl M/,

la la/ la,,

N g0 N/ fo N//
If0"og1 =5 9000 and 0" o f1 =5 foo0d', then

9" o f1 091 =s54N,(g1)-6" fo o goo0 0.
Proof. In view of Lemma 3.6, we have
9" o fiogi =n,(g)sr food ogi,
food og1=5 foogood,
which combines to the claimed almost equality. O

Remark 3.9. Let A C X be measurable, let \,\' € R with supp;(\) C A,
supp; (\) C A4, and let f, f': (A) — R be the R-homomorphisms given by right
multiplication by A and )\, respectively. Then the following are equivalent:

(i) A =s )\/;
(ii) p(supp; (A = X)) < 4
(iil) f =5 f"

Moreover, we recall that (Remark 2.26)
f1(suppy (A — X)) < v(supp(A — X)) < [A = N
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3.2. Controlled almost equality. Almost equality of maps is not robust with
respect to norm estimates. We thus proceed to a controlled version of the notion
of almost equality from Section 3.1:

Definition 3.10. In the situation of Setup 3.1, let M and N be marked projective
R-modules, let f, f': M — N be R-homomorphisms, and let 0, K € R-y. We then
say that f is (8, K)-almost equal to f' if there exists a marked decomposition M g
My & M, with

flare = f'lm, and - dim(My) <6 and || flar, — flan || < K.
In this case, we write f =5k f'.

Proposition 3.11. In the situation of Setup 3.1, let M, N be marked projective
R-modules, let f, f', f": M — N be R-homomorphisms, and let 6,8, K, K’ € Ryq.
Then the following hold:
(i) We have f =5k f.
) We have f =5k f' if and only if f — f' =5k 0.
(i) We have f =5 [ if and only if f =5 f" and ||f — f'|| < K.
(iv) If f=s.x f' and 6 < ¢, K <K', then f =5 r' [
) If f=sx [ and [ =5 i [, then f =515 ki [
) Let g,g': M — N be R-homomorphisms with g =5 1 ¢'. If f =sx [/,
then f 4+ g =s45 kv '+ 9.
(vii) Let L and P be marked projective R-modules and let h: N — P, g: L - M
be R-homomorphisms. If f =s i f', then

hof=snx hof and fog=n(gsq)x [ 09
Moreover, if g: L — M is a marked R-homomorphism, then fog =5 k f'og.

(viii) Let L and P be marked projective R-modules and let g,g': L — M be R-
homomorphisms with g =5 i ¢'. If f =s.x f', then

fog=ng)s+s gl K+ [ o9

Proof. (1)—(vi) These properties are straightforward.
(vii) This follows from Lemma 3.6 and Remark 2.33.
(viii) This follows from parts (vii) and (v). O

3.3. A Gromov—Hausdorff distance for homomorphisms. We introduce a
notion of Gromov—Hausdorff distance for homomorphisms between marked projec-
tive modules. As in the case of metric spaces, the Gromov—Hausdorff distance is
defined by inclusions into joint ambient objects.

Definition 3.12 (marked symmetric difference). Let M = @,.;(A;) be a marked
projective R-module and let N = @, (B;), N' = @, ,;(B;) be marked projective
summands of M. Then we define the marked symmetric difference of N and N’ by

NoN' =B A B)).
i€l

Definition 3.13 (Gromov-Hausdorff distance for homomorphisms). In the situa-
tion of Setup 3.1, let M, N, M’, N’ be marked projective R-modules, let f: M — N
and f': M’ — N’ be R-homomorphisms, and let §, K € R-g. We then say that
dBy(f, f') < & if there exist marked projective R-modules L, P and marked in-
clusions p: M — L, ¢': M' — L, ¢: N — P, 4¢': N' — P with the following
properties:

o dim(p(M)@¢'(M")) <6

o dim(y(N)@Y/'(N')) <6
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o ' =5k F', where F := o fom,, F' :=1'of on, and m,, m, are
the marked projections associated with the marked inclusions ¢ and ¢,
respectively.

Proposition 3.14. In the situation of Setup 3.1, let M,M' , M", N,N',N" be
marked projective R-modules, let f: M — N, f': M' — N', f"- M" — N" be
R-homomorphisms, and let 8,8, K, K' € Rsq. Then the following hold:

(i) If défH(f, f) <4, then
|dim M —dim M'| <§ and |dim N —dim N’| < 4.

(ii) If M = M' and N = N’ and f =5 i f', then d&(f, ') < 4.

(iti) If dEy(f, f)) <6 and 6 < &', K < K, then d5;(f, ') < &'.

(iv) If dBs(f, f') < 8, then there exist marked R-homomorphisms ®: M — M’
and ¥: N — N’ with @ o f =5 f' o ®.

ML N

4

=l

/

= ¢

o
(v) If d&u(f. ') < 8 and (', f") < &', then
A5 () <5+ 0
Proof. (i) This follows from
|dim M — dim M'| = | dim ¢(M) — dim ¢’ (M")| < dim(p(M) @ ¢'(M")) < 6

and similarly for N and N’.
(ii) and (iii) These are clear.
(iv) Take @ := m, o ¢ and ¥ := mys 0 ¢). Then

\IJof:ﬂ'w/owofompogo:Ww/oFogp
=5,k Ty 0 F' o (Proposition 3.11 (vii))
= Ty oz/}/oflowwlogp:f/o@.
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(v) Suppose d&4(f, f') < & and d%; (f’ ") < ¢’ witnessed by

M —— N

with F' =5 ¢ F' and G =5 g G'. We may assume that L = @, .,
P, (A7), and M' = P, (B;) with B] C A; and B; C Aj. We define

LN = @ <A1 U A,/L>

iel

(4i), L=

and similarly, we define P”. We have

L :::F:/::i pP
o
1,1
r :::2/:3 P’

We denote the compositions L” — P” by F.F,G,G, respectively. Then we have
F =5 K F’ and G =5 K’ G’ by Proposition 3.11 (vii), and F = G. By Propo-
sition 3.11 (vi), we conclude F =54+6" K+K' G/, witnessing that dé(;{K (f, [ <

J+0. O

3.4. A Gromov—Hausdorff distance for chain complexes. We extend the
notion of Gromov-Hausdorff distance to chain complexes and, more generally, to
sequences of homomorphisms.

Definition 3.15 (marked projective sequence). In the situation of Setup 3.1, let
n € N. A marked projective n-sequence (over R) is a sequence (D,,n) of the form

8n+1 do=n
Dn+1 Dn e DO

L>(a),

consisting of marked projective R-modules Dy, ..., Dy41 and R-homomorphisms
80 = 17,81, cen ,8n+1.

Clearly, marked projective R-chain complexes (up to degree n + 1) are marked
projective n-sequences.

For the Gromov-Hausdorff distance between sequences, we require the inclusions
into a common ambient module to exist simultaneously for all degrees in the given
range:

Definition 3.16 (Gromov-Hausdorff distance for sequences). In the situation of
Setup 3.1, let n € N, let (Dy,n), (D,,n’) be marked projective n-sequences over R,
and let §, K € R~g. We then say that d&;(D., D,,n) < § if there exist marked
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projective R-modules Py, ..., P11 and marked inclusions ¢,: D, — P, ¢l.: D. —
P, for all r € {0,...,n+ 1} with the following properties:

e For all r € {0,...,n + 1}, we have
dim (¢, (D;) © ¢(D})) < 8.
e Forall r € {0,...,n+ 1}, we have
F, =5k F,,

where F,. = ¢, 100,07, and F = @] 00, 0m, . Here, P_; = L>(a)
and ¢ = idpe(a) = ¢ 1.

0
n+1 Lﬂ) A Dy *> Loo
e R
,Jil ,,,,, Sl
n+1 —————————— ? L

- e -
’ s Fn+1 / ] ’ LA FO
P41 Pnt+1 Pn Pn Po 0
!

- . D) —— L*™(«

Oy 9

Proposition 3.17. In the situation of Setup 3.1, let n € N. Let (D4, n), (D, n'),
(DI;n'") be marked projective n-sequences and let §,0', K, K' € R~q. If we have
dBy(D., D,,n) < § and d&; (DL, D! ,n) < &', then

A5 (D, D! n) < 6+

Proof. The proof is similar to that of Proposition 3.14 (v). O

4. STRICTIFICATION

We prove two strictification results:

e Theorem 4.8: Every marked projective “almost” chain complex is “close”
(in the Gromov-Hausdorff sense) to an actual chain complex.

e Theorem 4.15: Every “almost” chain map is “close” to an actual chain map
to a target complex that is “close” to the original target complex.

The control on the constants is delicate, in particular, in degree 0.

Setup 4.1. Let I' be a countable group and let Z denote Z (with the usual norm)
or a finite field (with the trivial norm). We consider a standard T-action «: T' ~
(X, ). Moreover, let R be the associated orbit relation and let R C ZR be a
subring that contains L (a, Z) x .

4.1. Almost chain complexes and almost chain maps. Almost chain com-
plexes are sequences that “almost” satisfy the chain complex equations. Almost
chain maps are sequences of homomorphisms between almost chain complexes that
“almost” satisfy the chain map equations.

Definition 4.2 (almost chain complex). In the situation of Setup 4.1, let n € N
and § € Ryg. A marked projective 6-almost n-chain complez (over R) is a marked
projective n-sequence (D.,,n) over R (Definition 3.15) such that

VTE{O,...,n} aT o ar-‘,—l =45 0

and such that 7 is §-surjective, i.e., there exists z € Dy with n(z) =5 1.
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Definition 4.3 (almost chain map). Let §,e € Rsq, let n € N, and let (Ci, ()
and (D,,n) be marked projective d-almost n-chain complexes. An e-almost n-
chain map C. — Dy extending idp () is a sequence (f: Cr — Dy )reqo,....nt1} Of
R-homomorphisms with

nofo=c¢ and Vic1 . ny1y OP o fr = fro100C.
We say that f, is marked if every f, is a marked R-homomorphism.
Lemma 4.4 (compositions of almost chain maps). Let d,e,e’ € Rsg and let
fe: Cy = D, be an e-almost n-chain map and g.: D, — E, be an &'-almost n-
chain map between marked projective §-almost n-chain complexes extending the
identity. Then, g, o f« is an (¢ + N¢&')-almost n-chain map extending the identity,
where N = maxX,c(o,....n+1} N1(fr).

Proof. This follows from Lemma 3.8. O

Proposition 4.5. In the situation of Setup 4.1, let n € N, and let (Dy,n) and
(DL,n') be marked projective R-chain complexes (up to degree n + 1) satisfying
dgH (D, D n) < 8. Then there exist marked 6-almost n-chain maps ®.: D, — D),
and @ : D, — D, extending idpe (o) with
(I’;. ] (I)r =5 idDT, (I’T. ] (I);. =5 idD;‘
forallr € {0,...,n+1}.
Proof. Let Py, ¢., ¢, be witnesses for d5;(D., D,,n) < § as in Definition 3.16. Set
®, = my 0@, and @, :=m, o¢,. Then ®, and ¢, are marked d-almost n-chain
maps, since we have
®, 00,11 = Tp! © Pr O Ory1
=T, OPrO00r41 0Ty, ©Pril
- 71—(,0’ OL'py1 ©Pr41
=5 Ty 0 F) 1 0o (Lemma 3.6)
=Ty 09, 00,410 Tl 1y O Pr+1
= ;+1 0Py
and similarly for ®,. We may assume that P, = @,.; (4i), D, = @,c; (Bi), D, =
P, (B;) with B;, Bj C A; and that ¢, ¢ are the obvious marked inclusions.
Then ®/. 0 ®,.: D, — D, is the marked R-homomorphism given coordinate-wise by
the projection (B;) — (B; N B}). Hence
sizey (@], 0 @, —idp,) < Y u(Bi \ (BN B)))
i€l
<Y u(B; A B)) = dim(¢,(D,) © ¢.(D})) <6
i€l
and similarly for ®,. o ®/. O
Lemma 4.6. In the situation of Setup 4.1, let n € N and let 6, K,e € Rsg. Let
(Ds,n) be a marked projective §-almost n-chain complex, let z € Do with 1(z) =5
1, cmd let (D *,77) be a marked pm]ectwe n-sequence. If dGH(D*,D*,n) < g,
then ( «» 7)) s a marked projective 5-almost n-chain complex where

5::max{5+ (1+vn(Dy))-e,6 4+ Ny(2) - €}
Vn(D*) = maX{HnHOle(alD)" Nl(an+1)}

Moreover, there exists a Z € Dy with 7)(2) =51, Ni1(2) < Ni(2), Na(2) < No(2),
and |Z]oo < |2]oo-
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Proof. Suppose that dé(H(lA)*, D,,n) < e is witnessed by

Or41 Oy
Dyy — D, —— D,

Sorr+1ﬂ§”w+1 Wnﬂtﬂw %rﬂﬂk’fw_ 1
Friq F

By Lemma 3.6, we have

~

FroFrp =Ny (Frpr)e FroFrqn
and
F.oF i1 =¢,_ 100,00 4107, =50,
since 7y, ., is a marked R-homomorphism. Moreover, since N1 (F,11) = N1(9r41),
the previous equalities together imply F.o ﬁr+1 =t N1 (9,11)-e46 0 (Lemma 3.6 (i)).
We conclude that
By 00py1 =75, 0FnoFuy 0Py =t N1 (9ys1)-e46 0-

In degree 0, we consider the diagram

R %(a)

] |

Dy —— L*(a)
W@oowol H

Do —1 L>()
where the R-homomorphisms f,, f; are given by z € Dy and 1 € L*(«), respec-
tively. Since n(z) =5 1 in L*°(«), we have no f, =5 f1. By Proposition 4.5 and its
proof, we have n =, o w5, o0 ¢o. Then Lemma 3.8 yields

fl =6+Ni(2)-€ ﬁo T3y © Po © fz-

Thus, the element 2z := w5, 0 po(2) € ﬁo is as desired by Remark 2.28. O

In particular, every sequence “close” to a chain complex is an almost chain com-
plex. Conversely, also every almost complex is “close” to a strict chain complex; this
is the content of the strictification theorem (Theorem 4.8). Similarly, we establish
strictification for almost chain maps (Theorem 4.15).

4.2. Strictification of almost chain complexes. To formulate and prove the
strictification theorems in the appropriate uniformity, we bound the complexity of
the input data as follows:

Definition 4.7. In the situation of Setup 4.1, let § € R, let n € N, and let
(D.,n) be a marked projective §-almost n-chain complex. We set

kn(Dy) = max{|[n], |07 ]|, -, 07111}
v, (Dy) = max{||n||oo7ﬁ1(6f), R ’E1(67?+1)}
Vn(Dy) = maux{||77||<>O7 N1(81D), . ,N1(8£+1)}.
Moreover, if k € R, then we say that &, (D,) < & if
max{rk(Dl), ooy, tk(Dpy1), ,%n(D*),gn(D*)} <K
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and there exists a z € Dy with
n(z) =5 1, Ni(z) <k, N2(z) <k, |2loc <.

Theorem 4.8. In the situation of Setup 4.1, let n € N and let kK € R~g. Then,
there exists a K € R~ such that: For every 6 € Rsg and every marked projective
d-almost n-chain complex (D, n) with K,(D,) < k, there exists a marked projective

R-chain complex (D.,n) (up to degree n+ 1) with
d54(Ds,Dy,n) < K - 6.

Moreover, D, can be chosen such that D, is a subcomplex of D. and such that the
inclusion map D, < D, is a (K - §)-almost n-chain map.

Remark 4.9. Moreover, if (D,,n) is S-adapted (Definition 5.2) and if there is
an S-adapted z € Dy with n(z) =s 1, N1(2) < K, Na(z) < K, |20 < K, We can

~

choose (D,,n) to be S-adapted.
Before giving the proof of Theorem 4.8, we discuss the case of degree 0 separately:

Lemma 4.10. In the situation of Setup 4.1, let n € N, let § € Rsq, and let
(Dy,m) be a marked projective d-almost n-chain complex. Moreover, let z € Dy
with n(z) =5 1 and let K = |1 —n(2)|ec. Then, there exists a marked projective

d-almost n-chain complex (D, 7)) with
d54(D.,D,,n) < §
and the following additional control:
o The R—homoinorphism n: ﬁo — L>(a) is surjective. More precisely, there
exists a Z € Dy with (Z) = 1 and
Ni(Z) < Ni(2)+1, N2(2) < Na(z)+1, and |Z]eo < 2loo + 1.

~

o We have (D) < Fn(Dy) + K + 1.

Remark 4.11. By Lemma 2.30, we have K = |1 — n(2)]ec < (En(D*))3 +1. We
may assume K = 0 if 7 is already surjective.

Moreover, if (D,,n) and z are S-adapted (Definition 5.2), we may choose (B*, n)
and Z also to be S-adapted.

Proof of Lemma 4.10. We consider the error term B = supp(n(z) — 1) C X and
set

.....

Furthermore, we define 5T =0, forallr € {1,...,n+ 1} and
ii: Do = Do ® (B) — L=(a)
Doy 3z — n(x)
(B) 2 xB - err 1—1(2).

Then, 7 is a well-defined R-homomorphism. By construction, 7 is surjective; indeed,
for Z:=z+ xp - €, we have N)(2) = 1, N1(2) < N1(2) + 1, Na(2) < No(z) + 1, and
|Z]oo < |2]oo + 1. Moreover, by hypotheses dim(B) = u(B) < § and ||7)](p)|| < K
(by definition of K'). Hence, § =5 x 7.

In addition, we have 7j o (Dg < ﬁo) =mnand 7o 0d; =nod;. Thus, (ﬁ*,ﬁ) also
is a 6-almost n-chain complex and d&;(D., D.,n) < 6.

We are left to show that %, (D.) < E,(D.) + K + 1. To this end, it is sufficient
to estimate the quantities associated to 7 and to the module Dy. We have

[7lloc = max {[[nlloc, [1 = 1(2)loo } < 1, (D) + K
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as well as
71 < [lnll + 11 =n(z)l < [0l + 1 = n(2)|ec < Kn(Ds) + K.

Moreover, by definition, rk(ﬁo) < rk(Dg)+1. Therefore, we conclude that En(ﬁ*) <
Rn(Dy)+ K + 1. O

Remark 4.12. In the upcoming proof and in the proof of Theorem 4.15 below,
we will take the liberty of writing “const,’ for constants that depend only on
(and n). For instance, x% + 1 could be subsumed in “const,", but dim D; cannot.

Proof of Theorem 4.8. In view of the preparation in Lemma 4.10 (and Remark 4.11,
Proposition 3.17), we may assume without loss of generality that n: Dy — L% («)
is surjective, which will simplify the notation in the proof below.

Let D_; == L™®(a), d_1 = 0. It suffices to show the following: For all r €
{0,...,n+1}, there exist marked projective R-modules D, = D,®E, withdim E, <
const,-d and an R-homomorphism (i: BT — ﬁr—l with the following properties:

87‘—1 o ar = 07 80|D0 =1, 8T‘D,,~ —const, 6,1 8’!‘7 ||8T‘|Er|| < consty.

We proceed by induction over the degree, modifying the chain modules and the
boundary operator (twice) in each degree:

For convenience, we set 50 =nand £_;:=0,0_1 =0.

For the induction step, let r € {0,...,n} and suppose that we already con-
structed 150, . DT 1 and R- homomorphlsms 8 D, — DT 1 as well as 8 D —
ﬁj,l for all j € {0,...,r — 1} subject to the following conditions:

Or_100,=0 and Vie{o,..r—1y 0j—100; =0.

Moreover, we assume that D, 1 is a marked prOJectlve summand in D, 1 of codi-
mension < const-d, that 6; =const,-5,1 Or, that 3 and 8T 1 satisfy the claimed
norm bounds, and that a,,_l\Dr_l =const,-5,1 Or—1. We have:

Ot O
Doy 25 D, -2y Dy 2N 5 Dy

L /

r 1

D,y —% -+~ —— Dy

Let Dy11 = @,.;(As) be the marked presentation of D,;i. For i € I, we
consider the error term

B; == supp; (5r 0 Ort1(xa; - ei)) cX.

Then B; C A; and from 0, o 9,41 =5 0 and 5T =const,.-s Or, W€ obtain

Zu ) < Zsmel 8 0 Ory1(XAa,; —|— Zsizel((gr — 0r) 0 Ory1(xa, ~ei))

il il i€l
<&+ #1 -sizey (8, — ;) - N, (8,41) (Lemmas 3.5 and 2.29)
S 1) + rk(DrJrl) . sizel(ar - ar) . Ml (3r+1)
< § + const,-0 < consty,-0. (Lemma 3.5)
We set

E,:=@B;) and D,:=D,&E,.
el
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In particular, dim(E,) < const,-d. Moreover, we define
57._,_1: Dyy1 — ZA),.
x4, € = (Ory1(xa, - €), —XB, - €)
and
8,: D, = D, & B, — D,
D.>xz— 5T(x)
E, 3 xB, - €i = Oy 0 01 (X4, - €);

both 5T+1 and 57« are well-defined R-homomorphisms. The marked decomposi-
tion Dyy1 =Zr @, (Ai \ Bi) © P, (Bi) shows that 9,11 =const,.s Ort1. By
construction, we have
8y 00,41 =0 and 8,100, =0,
To see the latter, we observe that 5T_1 o @\DT = 5T_1 o 5r =0andforalliel
Or—10 aT‘(XBi : 67;) =0r_10 57" o 87’+1(XA.; : ei) =0,

where we used the inductive property @,1 o 5T = 0. Furthermore, by construction,
we have ||Or41|| < ||0r41]] + 1 and 0r|p, = Or =const,..s Or. Also, by induction, we
have the estimate ||A8r|| <0l - (1Or4a ]| + 1) < ([19:11 + 1) - (19411l + 1) < const,.

Finally, we set D,+1 := Dp41 and Op41 = Op41. This concludes the construc-
tion. In particular, we obtain the claimed norm estimate for 0,41 = Opy1. O

Remark 4.13. Clearly, the inductive construction in the above proof preserves
S-adaptedness (Definition 5.2) throughout if we start with an S-adapted z € Dy
with n(z) =5 1.

4.3. Strictification of almost chain maps. To formulate and prove strictifica-
tion of chain maps, we bound the complexity of the original chain map.

Definition 4.14. In the situation of Setup 4.1, let § € Ry, let n € N, and let
f«: Cx = Dy be a d-almost n-chain map between marked projective (almost) R-
chain complexes. Then, we set

’%n(f*) = max{l|f0||> ) an+1H}
Theorem 4.15. In the situation of Setup 4.1, let n € N and k € Rso. Then, there
exists a K € Rsq such that: For all § € Ry, if (Cy,¢) and (D.,n) are marked
projective R-chain complexes (up to degree n + 1) with max{x,(Cy),vn(Cs)} < K,
kn(Dy) < K and if f.: C. — D, is a §-almost n-chain map extending idpe(q)

with kn(f«) < K, then there exists a marked projective R-chain complex (D.,7) (up
to degree n + 1) and an R-chain map f.: C. — D, with the following properties:

o We have dgH(lA)*,D*,n) < K-6.
e Forallr €{0,...,n+ 1}, we have d&;(fr, fr) < K - 4.

Remark 4.16. Moreover, if (Cy, () and (D.,n) as well as f, are S-adapted (Defi-

~

nition 5.2), we can choose (D,,7) and f, to be S-adapted.

Proof. Let D_q = L™ («), 5_1 =0, and f_l = idpe(q). It suffices to show the
following: For all r € {0,...,n+1}, there exist marked projective R-modules D, =
D,®E, with dim(E,) < const,-J and R-homomorphisms 0,.: D, — D,_1, f: Cp. —

~

D,. with the following properties:
8r o 8T71 =0, aT|D,,. = 8TDa ||8r

E,.|| < consty



THE CHEAP EMBEDDING PRINCIPLE 33

and
fr —const,-§,1 fra ||fr|| < ”fr” +1

We proceed by induction over the degree. Let r € {—1,...,n} and let us suppose
that f* and D are already constructed up to degree r Wlth the claimed properties.
We extend the construction to degree r 4+ 1: To this end, we consider the error
function
A= rD+1 ° fry1— J?r Oagrl: Cry1— ﬁr-
Let Cpy1 = @, (Ai) be the marked presentation of C,.1; for i € I, we set
B; == supp; (A(xa, - €))

and
Bry=@(Bi) and Dyj1i=Drp1 ® By
i€l
We then consider the well-defined R-homomorphisms
J/C\r+1: Cri1— ﬁrJrl
XA; "€ — (f’l‘"rl(XAi : ei)a —XB; ei)

and

-~

8rs1: D1 — D,
Dyy122— 83_1(@
XB, - € = Alxa, - €).
In particular, 5r+1|Dr+1 = 8{11 and ﬁ+1 =dim(E,41),1 fr+1. It remains to show

that this construction has also all the other claimed, inductive, properties:
Dimensions. By construction, we have

A= (33-1 o fry1— fro 7+1) —(fr=fr)o §+1~
The first difference is d-almost equal to 0, because f, is a d-almost n-chain map.
Moreover, we know (f,. — f,) o 7~C+1 consty N1 (8C, )6 0 from the inductive prop-

erty fr =const,.-s Jr and Lemma 3.6 (iii). Unifying all constants, we conclude
that A =const,..s 0 (Lemma 3.6 (i)). In particular, with Lemma 3.5 we obtain

dim(E,41) Z,u ;) = size1 (A) < consty-d.
el

Chain complex property. On the one hand, for all z € D, 1, we have 5T+1(x) =
9P 1 (z) € D, and so with the strict chain complex property of (D.,7) we calculate

By 0 Ory1(x) = 8, 000, (x) = 0P (9P, (x)) = 0.

On the other hand, for all ¢ € I, by construction, we have
0r 0 0ry1(XB, - €i) = Op 0 82&-1 o fry1(xa, - €i) —0Oro fro 67~C+1(XA1~ “€;).

Because 97,1 0 fr41(xa, -€;) lies in D,., the first term equals 97 0921 0 fr41(x 4, €:),
which is zero. For the second term, by induction, we have

8r o fr o 7‘C+1(XAI' . ei) = f'rfl o 8rc o aSJrl(XAi : ei)a

which is also zero. Therefore, 5,. o 5,.+1 =0.

Chain map property. The fact that 57,4_1 o ﬁ—s—l — ﬁ ) f_H = 0 is immediate from
the construction. N R

Norm estimates. By construction, || fr41]l < [[fr41||+1 and [|0r41|5, ., || < Al
Moreover, |A]| can be subsumed in const,.
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5. DEFORMATION

We explain how to adapt modules, maps, chain complexes, and chain maps to
a dense subalgebra of the measurable sets. Our key example is the algebra of
cylinder sets in profinite completions along directed systems of finite index normal
subgroups.

We prove two deformation results:

e Theorem 5.8: Every marked projective chain complex is “close” (in the
Gromov—Hausdorff sense) to an “adapted” chain complex.

e Theorem 5.10: Every chain map is “close” to an “adapted” chain map to a
target complex that is “close” to the original target complex.

Setup 5.1. Let I" be a countable group and let Z denote Z (with the usual norm)
or a finite field (with the trivial norm). We consider a standard T'-action a: T’ ~
(X, ). Moreover, let R be the associated orbit relation and let R C ZR be a
subring that contains L (a, Z) x .

Let S be a subalgebra of all measurable sets of X that is p-dense and that
satisfies ' - S C S. We write L for the subring of L («) generated by S.

5.1. Adapted objects/morphisms. Elements, homomorphisms, or modules are
adapted to the algebra S if they involve only measurable subsets in S.

Definition 5.2 (adapted). In the situation of Setup 5.1, we say that:

e A marked projective R-module M = @, ,(A;) is adapted to S if A; € S
holds for all ¢ € 1.

e An element in ZR is adapted to S if it lies in L * T.

e An R-homomorphism between marked projective R-modules is adapted if
it is defined over L xI'. These notions admit obvious extensions to the case
where the target R-module is L™ («).

e Marked projective chain complexes are adapted to S if the chain modules
and the boundary operators are adapted to S. Chain maps between marked
projective chain complexes are adapted to S if they consist of adapted ho-
momorphisms.

5.2. Adapting module homomorphisms. Density of the subalgebra leads to a
basic deformation observation, which will be the foundation for all other deforma-
tion results:

Lemma 5.3. In the situation of Setup 5.1, let A, B € S and let A\ € R with supp(\) C
Ax B. ThAen, for each § € Ry, there exists an S-adapted element A € L+ C R
with supp(A) C A x B and:
(i) A =5 \;
(i) o < Ploos A
(111) ( ) < N1(A) and No(A) < No()N);
) |)\ A < 9.

Proof. We use that L ()  I' is L'-dense in R C ZR and that L T is L'-dense
in L*®(a) # ' (because S is p-dense). We can write A in the form

A= Z Ak XA(Ar 1)
keN

with A € Z, A, C X measurable, v, € ', and A(Ag, Vi) = {(7 - z,2) | z € Ax}.
Moreover, we may assume without loss of generality that this decomposition is
reduced in the sense that the sets A(Ay, ;) are pairwise disjoint.
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We now make the following deformations: We truncate A to a finite sum, ap-
proximate the Ay by elements in S, and finally adjust the resulting functions to
satisfy the upper bounds for N; and Ns.

Truncation. Because |A|; < oo, we can find a finite (non-empty) subset K C N
such that

Ak = Z Akt XA(Ap ) € L) # T
keK

satisfies | A — |1 < 4.

Approzimation. Because S is y-dense and A, B € S, foreach k € K, we find A, €
S with g - A X A, C A x B and
0

A A A <
p( Ay k) K w11

In addition, by inductively refining the choice of the Ap, we may assume that the
sets A(Ay, ) are pairwise disjoint. Then A = D okek Mk XA (A ) lies in LxT

and since each A\, € Z it satisfies | X oo < |A|so as well as
v(supp(A — ) < [A = Al
< A=Akl + Ak = Ah
< ’Z Ak " XA(AR ) AA (A k) 1 +9
keK

<Moo+ D Ak A Ay) +6
keEK
<2-6.

Controlling N1 and Ny. We consider the violating subset
E = {(z,y) € supp( (N ) | Ni( Xy) > Ni(A) or No(A, z) > Na(N)}.

By definition, F lies in the subalgebra S ® S and F C supp( ) A supp(A). In
particular,

v(E) < V(supp(X - X)) <2-0.
We finally consider the modified function
By construction, X € LT and X satisfies the following estimates:
Ni(A) < Ni(A) and Na(A) < N()) (by construction of E);
Plo < Ao < P )
u(suppl()\ /\)) < V(supp()\ )\)) (E)irl/(supp(/\f)\)) <2:042-0 =4-6;
|)\ A < |)\ Ao - y(supp()\ A)) < (Moo + A |oo) 40 =Moo - 8- 4.

In particular, A =45 A (Remark 3.9). Rescaling § by the factor 1/(4 + |A|s - 8),
which depends only on A but not on 4, finishes the proof. O

Lemma 5.4. In the situation of Setup 5.1, let f: M — N be an R-homomorphism
between S-adapted marked projective R-modules. Then, for each § € R~q, there
exists an S-adapted R-homomorphism f: M — N such that:
(i) f=sf:
(i) 1 Fllog < 11 oo A
(i) Ny (f) < Ny (f) and No(f) < No(f)-

In particular, with K¢ := No(f) - || fllco, we obtain J?=572-Kf f.
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Proof. Because of Lemma 2.31, it suffices to prove the first three claims. Indeed,

LF = FIL < IFIL+ 1A S No(F) - [ Flloo + No(f) - [ flloo < 2 K.
By definition of the involved norm and size invariants, it suffices to consider the
case that M and N have rank 1; we thus consider the case that M = (4), N = (B)
with A,B € S and that f: M — N is given by x4 — A - xp with A € ZR
and supp(A) C A x B (Remark 2.18). Applying the previous approximation result
(Lemma 5.3), we find A € L « T that satisfies

A=52 Ao <Moo Ni(D) SNV, N2(X) < No(N).

Therefore, the R-linear map fA: (A) — (B) given by x4 — X x5 is well-defined
and has the following properties (Remark 3.9, Remark 2.32):

() T = f: )
(i) ||f||oo—|f 3o = Ploo < Alos —anm,
(i) N, (f) = M(3) < Ni(A) = Ny (f) an
N, () = Na(3) < Na(A) = N, (). 0

5.3. Adapting almost chain maps. As above, given an R-homomorphism f
between marked projective R-modules, we set Ky := No(f) - || f|loo-

Proposition 5.5. In the situation of Setup 5.1, let n € N, let § € Ryq, and
let fu: (Ci,C) — (Dy,m) be a §-almost n-chain map between marked projective S-
adapted R-chain complexes. Then, there exists an S-adapted (2 - §)-almost n-chain

map f: (Cs,¢) = (D«,n) extending idpe(q) with the following properties: For
allr€{0,...,n+ 1}, we have
(1) fr/\:zs fr;
(i) frlloe < 1frlloos R
(iii) Ny(fr) < Ny(fr) and No(fr) < No(fr)-

In particular, fr =s2.x, fr-

Proof. For € € Ry, we apply Lemma 5.4 to fo,..., frn+1 and to the parameter € to
obtain corresponding S-adapted fo,..., fr+1 with norm and multiplicity control.
A straightforward computation (using the basic estimates from Lemma 3.6) shows

that f, isa (6 + (1+ vn(Cs)) - €)-almost n-chain map extending idz(,). We then
choose our initial € small enough. O

5.4. Adapting chain complexes (almost). We can approximate chain com-
plexes by adapted almost chain complexes by approximating the chain modules
and boundary operators by adapted modules/homomorphisms:

Proposition 5.6. In the situation of Setup 5.1, let n € N, let (Dy,n) be a marked
projective R-chain complex (up to degree n + 1), and let z € Dy with n(z) = 1.
Then, there exists a K € R~q such that: For every § € R+, there exists a marked
projective S-adapted -almost n-chain complex (ﬁ*, n) with

d8y(D.,D,,n) < 6
and the following additional control:
o Forallr € {0,...,n+ 1}, we have tk(D,) < rk(D,).
e Forallr € {0,...,n+ 1}, we have N,(0P) gﬁ (oP).

o There exists an S-adapted Z € Dy with )(Z) =s 1, N1(2) < N1(z), Na(Z) <
Na(z), and |Z]oo < 12|00

In particular, Fn(D,) < Fp(D,) + K.
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As a preparation, we first adapt the chain modules:

Lemma 5.7. In the situation of Setup 5.1, let n € N, let (D,,n) be a marked
projective R-chain complex (up to degree n + 1), and let z € Dy with n(z) = 1.
Then, there exists a K € R such that: For every § € R+, there exists a marked

~

projective §-almost n-chain complex (Dy,7) consisting of S-adapted chain modules
(but not necessarily S-adapted boundary operators) with

d5y(Ds,D,,n) < §

and the following additional control:

~

e Forallr €{0,...,n+ 1}, we have tk(D,) < rk(D,).
e Forallr € {0,...,n+ 1}, we have N;(0P) < N,(8P).
o There exists a zZ € Do with (Z) =s 1, N1(Z) < N1(2), N2(2) < Na(z), and

1Zloo < [2]oo-

Proof. Let § € Rsg. Because S is p-dense, we can efficiently adapt the chain
modules: For r € N and the marked presentation D, = @, ;(A;), we choose 4; € S

in such a way that » ., 1(A; A A;) < 6. We then consider the S-adapted “sibling”
D, = P(4;).
icl

In particular, rk(ﬁ,«) =rk(D,) and | dim D, — dim D,| <.

We write ®,.: D, — ﬁr for the composition of the canonical inclusion/projection
to/from the joint canonical hull P, := @, (A; U gﬁ of D, and ﬁr; in particular,
N,(®,) < 1. Similarly, in the other direction, we write ¥,.: ﬁr — D, for the
canonical -homomorphism. Moreover, we set ®_; := idpec(o) and ¥_; = idpeo(q)-

Regarding the boundary operators, we consider the compositions

57« =0, _100,0V,: lA)r — IA)T_l
for r € {0,...,n+ 1} and set 7] := do. Hence we have the commutative diagram:

Or
D, —— D,_,

~

By construction, N;(9,) < N;(9,) and we claim that
2-kn (Du) [ 7
Az P)(Dy, Duyn) < (14 va(Dy)) - 6.
Indeed, this is witnessed by the following diagram:

Or
D, —— D,_;
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By construction, we have

F.=p. 1 OTZ, 4 OFro@roﬂ'@,
idp, =51 @7 0 7g,
idp, , =61 pr-1075,_,-

Using Proposition 3.11, we conclude

Er =57 $r-107g,_, 0 Fr
Pro107g,_, © Fr =ny(7).5) 7, Fr

and together, using Ny (F,) < N1(0,) and ||F,|| < |10,

Fr=a+mn))-s20.0 Fr-
This proves the claim. Since all the estimates depend only on D,, we can now
rescale our initial § appropriately and apply Lemma 4.6. O

Proof of Proposition 5.6. We set K = 2-max{Kjy,,...,Kg,,  }. Let 6 € Ryo. In
view of Lemma 5.7 and the triangle inequality of the Gromov—Hausdorff distance
between (almost) chain complexes (Proposition 3.17), we may assume without loss
of generality that (D,,n) is a marked projective d-almost n-chain complex with
S-adapted chain modules of the same ranks; however, z € Dy might not map to 1,
but only satisfy the almost equality n(z) =5 1 (while keeping control on Ny, Na,
and | - |oo)-

We then set ﬁT = D, forallr € {0,...,n+1} and apply the basic approximation
lemma (Lemma 5.4) with accuracy § to 9y = 7,0; ...,0,11 to obtain S-adapted
R-homomorphisms ans D, = D, for all r € {0,...,n+ 1} with

o~ ~

ar —6,2-Kp,. ar and Ml (87") S Ml (ar)

Therefore, dgH(ﬁ*,D*, n) < 4.

Finally, approximating the carrier sets appearing in z well enough through el-
ements of S, we find an S-adapted Z € Dy with 7(2) =25 1, N1(3) < Ni(2),
N3(Z) < Ni(2), and |Z]oo < |2z|oo (using Lemma 5.3 in each coordinate). Ap-
plying Lemma 4.6 and rescaling the initial parameter § beforehand completes the
proof. O

5.5. Deformation of chain complexes. We first approximate the chain complex
by adapted almost chain complexes (Proposition 5.6) and then strictify these almost
chain complexes (Theorem 4.8):

Theorem 5.8. In the situation of Setup 5.1, let n € N and let (D.,n) be a marked
projective R-chain complex (up to degree n + 1). Then there exists a K € Rsg
such that: For every 0 € R~g, there exists an S-adapted marked projective chain
complex ﬁ* (up to degree n+ 1) with

d&y(D., D, n) < 6.

Proof. First, we fix some constants: Let z € Dy with n(z) = 1 suitable for &, (D).
We apply Proposition 5.6 to (D, ), z, and n € N and thus obtain a constant K €
R with the properties in Proposition 5.6, controlling S-adapted almost chain
complexes approximating (D, n). We set

Kk =TFn(Dy) + K + 1.

Let K/ € R.q be a constant as provided by Theorem 4.8 when applied to the
parameters n and k.
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Now, let 6 € Rsg. Let (D, n.) be an S-adapted d-almost n-chain complex as
obtained from Proposition 5.6 for §. In particular,

Fn(D.L) <Fn(D.)+ K <x and dSg(D., Ds,n) < 6.
Thus, by the strictification theorem (Theorem 4.8), there exists an S-adapted

~

marked projective R-chain complex (D, 7)) (up to degree n + 1) with
d&y(D.,D.,n) < K'- 6.
In total, we obtain (Proposition 3.17)
A5 Dy, Dyyn) <6+ K' -6 =(1+K') - 6.
Unifying the constants and rescaling § beforehand, gives the desired result. O

5.6. Deformation of chain maps. We apply the previously established defor-
mation theorem for chain complexes (Theorem 5.8), the approximation of almost
chain maps (Proposition 5.5), and the strictification of chain maps (Theorem 4.15)
to prove the following:

Theorem 5.9. In the situation of Setup 5.1, let n € N. Let (@,Z) and (Dy,n)
be marked projective R-chain complexes (up to degree n+ 1) with (é*, E) being S-
adapted. Let F,: 5* — Dy be an R-chain map extending idpe (). Then there exists
a K € Ryq such that: For every § € R, there exists an S-adapted R-chain map
F.: C. — D, with

d84(Ds, Dayn) <6 and Yyeqo.. np1y diu(Fr, Fr) < 0.

Proof. We first fix our set of constants: Let K € Ry be a constant as provided by
Theorem 5.8 when applied to n € N and the target complex (D, 7).
We set N := max{Ny(Fp),..., N1(Fnt1),1} and

K= max{fin(a*), Vn(é*), Kn (D )+ K, No(Fo)-|| Folloos - - - » Ng(Fn+1)-||Fn+1||OO}+1.

Let K’ € R+ be a constant as provided by Theorem 4.15 when applied to n € N
and k.
Now, let § € Rsg. We proceed in the following steps:

F.: 6* — D, (D, chain complex, F, chain map)
F':C, — D, (D, adapted chain complex, F’ almost chain map)
F":C, — D' (D’ adapted chain complex, F”’ adapted almost chain map)

F.:C,— D, (ﬁ* adapted chain complex, F, adapted chain map)

Adapting the target complex. Theorem 5.8 yields an S-adapted marked projective
R-chain complex (D7, n’) (up to degree n + 1) with

dgH(D;aD*an) <4

In particular, £, (D)) < k,(D.)+ K < k. By Proposition 4.5, there exists a marked
d-almost n-chain map @, : D, — D/, extending idp e (q) With

Vrcio,..mt1} |®rlloc £1 and N (®,) <1 (Remark 2.33).
We consider the composition
Fl:=®,0F,: C. — D!,

By construction, F} is an (N-¢)-almost n-chain map extending id (o) (Lemma 4.4)
and

F,
Voc(ormity No(F) S No(F), [1Flleo < |Frlloos  disgV(FLF) < N -,

T
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Adapting the chain map (almost). We apply Proposition 5.5 to obtain an S-
adapted (2 - N - §)-almost n-chain map F): C, — D/ that satisfies

kn(F) < E{Omaxﬂ}(ﬂz(F;,’) IF ) (Lemma 2.31)
< max (Ny(F))-||F!|ls) (Proposition 5.5)
re{0,...,n+1}
< No(F) - | Fr oo truction of F/
_re{gf.l.z.i:};(z—&-l}(iz( ) 1 Frllso) (construction of F)
<K

and dosi ™ (F, F!) < N - 6.

Strictifying the chain map. Finally, we apply the strictification of chain maps
(Theorem 4.15 and Remark 4.16) to F”: C, — D! and the accuracy 2 - N - 6.
This is possible because max{ry,(Cs),vn(Ci)} < K, kin(DL) < k, and k,(F!') < k.
Hence, we obtain an S-adapted marked prOJectlve chain complex (ﬁ*,ﬁ) (up to
degree n + 1) and an S-adapted R-chain map F.: C, — D, (up to degree n 4 1)
extending id e (o) With

d8y(D,,D.n) < K'-2-N-§
Vee(o..ms1y dag(Fr FY) <K'-2-N-4.
Moreover, we have (Proposition 3.17 and Proposition 3.14)
d5t K (DyyDyyn) <64+ K'-2-N-6=(1+K'-2-N)-§
Voe(onminy A2 Ent R BY) < (N+ N+ K -2-N)-6.
Unifying the constants and rescaling § beforehand, gives the claimed result. O

Theorem 5.10. In the situation of Setup 5.1, let C be a free ZT' -resolution of Z
that has finite rank in degrees < n + 1 and let f.: Cy — D, be an a-embedding
(Definition 1.1). Then there exists a K € Rsq such that: For every 0 € Rsq, there

exists an S-adapted a-embedding f*: C, — D, with
d8y(Du, Dyn) <8 and Vypcqo. mr1y dig(IndZn(f), mdZn(f) <0

Proof. Let (6*, E) be the result of applying the functor Indff‘ (Remark 2.21) to the
given resolution (Cj, ¢) and let Fi: C. — D, be the R-chain map (up to degree n-+
1) induced by f.. Theorem 5 9 ylelds an S- adapted R-chain map F.:C,— D, In
particular, the restriction f*. C. — D, of F, to the “ZT- subcomplex” C, of C, is
an S-adapted a-embedding. O

Our main application will be in Section 7 to approximate embeddings over profi-
nite actions by chain complexes related to individual finite index subgroups.

Moreover, for invariants with controlled behaviour with respect to the Gromov—
Hausdorff distance, there is no difference between considering embeddings with
target complexes over the equivalence relation ring or the crossed product ring. In
particular, this applies to the measured embedding dimension and the measured
embedding volume (Section 17).

6. A LOGARITHMIC NORM FOR MORPHISMS

We introduce a refinement of the quantity dim(N)-log, || f|| for homomorphisms
fi+ M — N between marked projective modules called lognorm(f). The key prop-
erties of this invariant are that it satisfies dimension estimates, subadditivity over
marked decompositions of the domain, compatibility with almost equality (Sec-
tion 6.2), compatibility with adaptedness (Proposition 6.9), and that it provides an
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upper bound for the logarithmic torsion of cokernels (Theorem 7.7). The ad-hoc
construction is given in Section 6.1.

6.1. Construction. We refine the expression “dim -log,_||-||"” by allowing for marked
decompositions of the domain and for taking marked ranks of images.

Setup 6.1. Let I' be a countable group and let Z denote Z (with the usual norm)
or a finite field (with the trivial norm). We consider a standard I'-action a: T' ~
(X, ). Moreover, let R be the associated orbit relation and let R C ZR be a
subring that contains L (a, Z) x .

Definition 6.2 (lognorm). In the situation of Setup 6.1, let f: M — N be an
R-homomorphism between marked projective R-modules.

e The marked rank of f is defined as
rk(f) == inf{dim(N’) | N C N is a marked direct summand with f(M) C N’}
€ [0, dim(V)].
o We set
lognorm'(f) = min{dim(M) - log [|£]},7k(/) - log, | /1]} € Rso.
e Let D(M) denote the “set” of all finite marked decompositions of M. For
(M;)ier € D(M), we set

lognorm’(f, (M;)ic1) = Zlognorm’(ﬂMi: M; — N) € Rxy.

icl
e Finally, we let
1 = inf 1 "(f, M) € Rso.
ogmorm(f) = | inf  lognorm'(f.M.) € Bz

The value lognorm(f) depends on the marked structure. We can adapt the
definition to subalgebras as follows.

Remark 6.3 (adapted lognorm). Let S C R be a subalgebra and f: M — N be an
S-adapted homomorphism between S-adapted marked projective R-modules. We
define Dg(M) as the “set” of all finite marked S-adapted decompositions of M and

lognormg(f) == u eiBE(M) lognorm'(f, M.) € Rxo.

6.2. Basic properties. We collect some basic properties of lognorm.

Proposition 6.4 (lognorm properties). In the situation of Setup 6.1, let f: M —
N be an R-homomorphism between marked projective R-modules. Then the follow-
ing hold:
(i) Dimension estimates. We have
lognorm(f) < dim(M) -log, ||f|| and lognorm(f) < dim(N) -log, | f].
(ii) Subadditivity. If M =g My & M is a marked decomposition, then
lognorm(f) < lognorm(f|as,) + lognorm(f|ar, )-

(iii) Marked inclusion estimates. If i: M’ < M and j: N < N’ are marked
inclusions of marked projective R-modules, then

lognorm(j o f) = lognorm(f) and lognorm(f o) < lognorm(f).

(iv) Almost equality. If § € Ry, K € Rxg, and g: M — N is an R-
homomorphism with f =s i g, then

lognorm(f) < lognorm(g) + ¢ - log, K.
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(v) Gromov-Hausdorff distance. If §, K € Rsq, and f': M' — N’ is an R-
homomorphism of marked projective R-modules with d&y(f, f') < 0, then

lognorm(f) < lognorm(f’) + 4 -log, K.

Proof. (i) The trivial decomposition of M into the single summand M gives both
dimension estimates.

(ii) Combining marked decompositions of My and M; results in marked decom-
positions of M. This leads to subadditivity.

(iii) For every marked decomposition M, € D(M), we see easily that

lognorm’(j o f, M,) = lognorm’(f, M,.),

because j is a marked inclusion. Taking the infimum over all M, in D(M) thus
shows that lognorm(j o f) = lognorm(f).

Every marked decomposition (My)rer € D(M) induces a marked decomposi-
tion (My)rer € D(M') such that for every k € I, the restriction i[py : My — My
is a marked inclusion; we have

lognorm’(f o ilM;i> < lognorm’( f|az,)-

Therefore, lognorm’(f o i, M.) < lognorm’(f, M,). Taking the infimum over D(M)
shows that lognorm(f o i) < lognorm(f).

(iv) This is a direct consequence of parts (i)—(iii).

(v) By part (iv) and the definition of Gromov-Hausdorfl distance, it suffices to
show that lognorm(¢ o f om,) = lognorm(f), if p: M — L, ¢»: N — P are marked
inclusions and m,: L — M is the marked projection associated to ¢. By part (iii),
we are left to show that lognorm(f o m,) = lognorm(f). Since 7, o ¢ = idp,
part (iii) yields lognorm(f) < lognorm(f o m,). Conversely, part (ii) yields

lognorm(f o m,) < lognorm(f o 7,|,(ar)) = lognorm f.

This finishes the proof. U

For a subgroup A of I, we denote the restricted action by a|a: A ~ (X, ). The
inclusion of crossed product rings L™ (a|p) * A — L>(«) *I" induces induction and

restriction functors IndLm(o‘)*F and ResLm(O‘)*F

Loo(afp)*A Lo (alp)+a Petween module categories.

Lemma 6.5. In the situation of Setup 6.1, let A be a subgroup of I

(1) Let g be a map between marked projective L™ (ce|p) * A-modules. Then
L (a)«T
lognorm(IndLmEa‘)A)*A g) < lognorm(g).
(ii) Suppose that A has finite index in T'. Let f be a map between marked
projective L™ () * I'-modules. Then

1ognorm(Res£:Ezf:§*A ) <[ : Al -lognorm(f).

Proof. (ii) Let ¢: M — N be a map between marked projective L («)*-modules.
Then
. L°°(a)*ID .
dlmLoo(a‘A)*A (ReSL‘X’Eal)A)*A M) < [F : A] . dlmLoo(a)*r‘(M)
(a)*I

L
Tk (a3 )en (Resy o (o)), p ) < [0 Al 1kp e 0)u0(9)

[Resy o0 x el < lell

The claim follows, since a marked decomposition of M induces a marked decompo-
it f R L (a)*I M
sition of Resyw (), ).n M-

Part (i) is proved similarly. O
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6.3. Explicit description of the marked rank. There is the following explicit
description of the marked rank.

Lemma 6.6. In the situation of Setup 6.1, let R = L™ (a)*x . Let f: M — N
be an (L°°(«) * I')-homomorphism between marked projective (L («) * I')-modules.
Fix a presentation of f as in Setup 2.34. Then, we have

rk(f) =ZH< U “YlAzﬂUk>-

jeJ (i,k,y)EIXKXF,
Qi j,k,~ 70
Proof. Since the marked rank is defined via marked decompositions, we can assume
without loss of generality that N = (B). We will thus drop j € J from the notation.
Let
B = U v '4inu.

(i,k,y)EIXKXF,
@i k,~#0

It suffices to show that (B’) is the smallest marked projective summand of N
containing f(M).

We first show that the image is contained in this summand. We denote by 7p\ g/
the canonical projection to the marked summand (B \ B’). For all i € I, we have
that mp\ps o f|(4,) is given by right multiplication with the element

(Xao D) DY ks (0 7) - (Xevsrs 1)
(kyy)EK X F,
ai,k,'}ﬁéo

= § Qi ke * (XAiﬁ'yUkﬂ'yB\A/BH ’7)
(ky)EKXF,
ai,k,’y750

= O)
because
AUy NyB\YB' Cy(y 1A NUk\ B)
C 7('7_1Ai NU\ (v 14N Uy)) = 0.

This shows that f(M) C (B’).

Conversely, let (ig,ko,70) € I x K x F such that a;, x,,, 7 0. It suffices to
show that (v;'A;, N Uk,) is contained in every marked projective summand con-
taining f(M). Indeed, let m: L°(a) * ' — L>°(«) be the L («)-linear projection
to the summand indexed by 1 € I'. We have

L0 f((XUkO,’Y(;l) ) (XAi07 1))

_ -1
—Wlof(XUkon—yoflAioafyo )

— ( —1) . a: . ( )

= M\ Mg a2 70 kot

(k,y)EKXF
—n( S ke (o o 0)
i0,k,y Uko Mg AigNyg YU 10
(k,y)EKXF
= E @ig ko 'XUkOﬁwJIAioﬁUk (prOJectlon)
keK

= Gig koo " XUy, (i sy ((Uk) pairwise disjoint)

Since a;y k.4 # 0, We obtain from Lemma 6.7 below that (Uy, Ny, ' 4;, ) is contained
in the marked direct summand generated by f(M). O
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Lemma 6.7 (recognising marked summands). Let M = (B) be a marked summand
of L®(a) x T and let x € M. Let m: L®(a) * ' — L*(«) be the L= («)-linear
projection to the summand corresponding to the identity element 1 € T'. Assume

that a € Z,a #0 and A C X such that m1(z) = a-xa. Then, (A) C M.

Proof. Tt suffices to show that A\ B is a null-set. Because x € M = (L*>°(«a) xT') -
(xB,1), we can fix a reduced presentation (see Setup 2.34) for z, i.e., x = X\- (x5, 1)

for some
A= Z a/(k:,"/) : (X"{Uka’}/)a
(k,y)EKXF

with K and F C T finite sets, a(; ) € Z, and Uy, C X. Then, we have
Q- XA\B = XA\B " @ XA
= XA\B 7y ()

= 7T1(XA\B “x)

=T ((XA\B; ]-) : Z A(k,y) - (X'yUka’Y) : (XBa 1))

(k,y)EKXF
= Z Q(k,1) " XA\B * XUy, * XB
keK
=0.

Thus, we have a - x4\ p = 0 almost everywhere with a # 0, which is only possible
if u(A\ B) =0. O

Lemma 6.8. In the situation of Setup 6.1, let R = L™ (a)*x . Let f: M — N
be an (L*°(«) * I')-homomorphism between marked projective (L°°(«) * I')-modules.
Fix a presentation of f as in Setup 2.34. Then, in the notation of Setup 2.34, we
have

tk(f) < dim(M) - #I - #J - #K - #F.
Proof. Because rk(f) is subadditive, we can assume without loss of generality that
f: (A) — (B) is given by right multiplication with
z=a-(x40,7),
where a € Z, v €T, and U C X. We have

(xa,1) - z=a" (Xy(r-14n0),7) € (Y TANTU)
and thus,
rk(f) < p(yTANU) < p(A) = dim(A). O

6.4. The logarithmic norm of adapted homomorphisms. The logarithmic
norm of adapted homomorphism can be computed through adapted decompositions:

Proposition 6.9 (lognorm, adapted homomorphisms). In the situation of Setup 6.1,
let R =L>(a)«T. Let S be a dense subalgebra of the set of all measurable subsets
of X. Let f: M — N be an S-adapted homomorphism between S-adapted marked
projective (L («) * I')-modules. Then

lognorm( f) = lognormg(f).

Proof. First, we record the following observation: Fix a presentation of f as in
Setup 2.34 with ¢ € N summands. For every marked summand W of M, we obtain
a presentation of f|y with the same number of summands. Thus, Lemma 6.8 yields
that

(6.1) tk(flw) < ¢ dim(W).
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Clearly, lognorm(f) < lognormg(f). For the converse estimate, let M = @, ; M;
be a marked decomposition of M and let € > 0. Without loss of generality, we may
assume 0 ¢ I. It suffices to show that there exists an S-adapted marked decompo-
sition (W;);eruqoy such that

lognorm'(f, (Wi)ielu{o}) < lognorm’ (f, (Mi)iel) +e.

Because S is dense, for every ¢ € I, there exists an S-adapted marked summand U;
such that p(M; ® U;) < e. Without loss of generality, we can assume that the
(Ui)ier intersect pairwise trivially.

By Corollary 2.38, for every ¢ € I, there is an S-adapted marked summand V;
containing M; such that

szl = 1 Flv -
For ¢ € I, we set
W, =U;NV;
Wo =M o Pw;,
icl

where © denotes the “marked complement”. By construction, the (W);erugoy form
an S-adapted marked decomposition of M. For all ¢ € I, we have

dim(W;) < dim(M;) + ¢
dim(Wo) < #I * €
I Iwll < 1 lal

[ lwoll < 171
< rtk(f|ar,) + ¢ - dim(W; © M) (Estimate (6.1))

<rk(flm,)+c-e.
Therefore, we obtain
lognorm’ (f, (Ws)ieru(0y)
= log || flw, || - min{dim Wi, vk(f|w,)} +log, || flw, | - min{dim Wo, rk(f|w,)}

icl
<> logy [[flar, |l - min{dim M; + e,xk(flar,) + ¢ e} +log, | fI| - #1 -
iel
<Y logy ||l || - min{dim M;, vk(f|ar,) } + #1 - log, || f]l - (c+1)
il
— lognorm(f, (M)ier) + & - (1+#1 -log, ] (c+1)).
Rescaling € appropriately proves the claim. 0

7. PASSING TO FINITE INDEX SUBGROUPS

We explain the passage from the dynamical view to finite index subgroups. More
precisely, for dynamical systems I' ~ T, coming from systems I', of finite index
normal subgroups, we reinterpret adapted modules and morphisms over the crossed
product ring as Z[I'/T;] * [-modules for large enough ¢ (where the multiplication
on Z[I'/T;] is pointwise multiplication of functions I'/T"; — Z).

Adapting dynamical embeddings then leads to homotopy retracts at the level of
finite index subgroups and thus eventually to the homological gradient bounds.
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Setup 7.1. Let n € N, let T" be a residually finite group of type FP,, 11, let (T';)ier
be a directed system of finite index normal subgroups of I' with (., I'; = 1, let
a: '~ f* be the associated dynamical system, and let Z be Z (with the usual
norm) or a finite field (with the discrete norm). We write (X, ) for the probability
space T',.

Setup 7.2. In the situation of Setup 7.1, for each i € I, we denote by

the cylindrical sets in the o-algebra of X = T, corresponding to the canonical
projection map m;: X — I'/T;. Let S be the union of all the S;, namely the
subalgebra given by

S=JSi={m"(4)|iel, AcT/I;}.
icl
We will use “I',-adapted” as a synonym for “S-adapted” to emphasise the origin of

the subalgebra S. We write L; for the subring of L>°(«, Z) generated by S;.
Furthermore, we abbreviate R := L™ (o, Z) * " and R; == L; = T.

Then S is p-dense in the set of all measurable subsets of X and I'-S C S [L5h20Db,
Lemma 6.4.2]. Therefore, the deformation arguments from the previous sections

apply.

7.1. Discretisation. Let i € I. We first establish a correspondence between L;
and Z[['/T;]. The projection m;: X — I'/T; induces mutually inverse ZI'-iso-
morphisms

7. Z[U/T;]) = L;, given by v-T'; — X (.Ts)
Tt Li = Z[I'/T4], given by xa — Xn,(a) for A€ S;.

In this sense, we may view objects and morphisms over L; (and whence those
over R;) as “discrete”. Under the above ZI'-isomorphism, the multiplication on L;
translates into pointwise multiplication on Z[I'/T';] of functions I'/T'; — Z. More-
over, we will use the following “pre-induction” construction:

Definition 7.3. In the situation of Setup 7.2, let i € I.

o Let M = P, ;(A;) be a marked projective R-module that is adapted to .5;.
Then, we set

M(i) = EP(Aj)r, = P Ri - (xa,. 1),

JjeJ Jje€J

which is a marked projective R;-module (and R ®pg, M (i) =r M).

o If f: M — N is an S;-adapted R-homomorphism between S;-adapted
marked projective R-modules, then we write f(i): M (i) — N(i) for the
corresponding R;-homomorphism (defined by the same matrix).

If f and g are S;-adapted and composable, then (g o f)(i) = g(i) o f(i). Conse-
quently, if (Dy,n) is a marked projective R-chain complex that is adapted to S;, we
naturally obtain a corresponding R;-chain complex (D, (%), (%)), which augments
to L;. Adapted chain maps translate into corresponding R;-chain maps.

7.2. Dimensions and norms. This discretisation is compatible with taking norms
and dimensions:
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Remark 7.4 (compatibility of dimensions). In the situation of Setup 7.2, let i € I
and let M be a marked projective R-module that is S;-adapted. Then the mod-
ule M (i)r of coinvariants is a free Z-module and

rky (M (i)r) = [I': T;] - dim(M).

Indeed, using compatibility with marked decompositions, it suffices to consider the
case that M = (A) with A € S;, say A = m; *(A;) with A; C T'/T;. Then, the map

€qTy; =1 & (Xﬂifl('yl‘iy 1) ' (XAa 1)

induces a Z-isomorphism

@Z 2z Li-xa=z Z®gzr (Li xT') - (xa,1) = M(i)r.
A;

Therefore,

. 1 .
Remark 7.5 (compatibility of norms). In the situation of Setup 7.2, let ¢ € I and
let f: M — N be an S;-adapted R-homomorphism between S;-adapted marked
projective R-modules. Then

[£@)rell < 171,

where the operator norm on the left hand side is taken with respect to the £!-norms
induced by the canonical Z-bases on M (i)r and N(i)r (Remark 7.4). Indeed, for
notational simplicity let us consider the case of f: (A) — (B) with A, B € S, given
by right multiplication by

= Z Z AT\ - (Xﬂ';l(’yri), )‘)

el ’yFiEF/Fi
Without loss of generality, we may assume that a,r, » = 0 whenever A4 &
m;(B). Using the canonical Z-isomorphisms M (i)r =z D, 4)Z and N(i)r =
®., () Z from Remark 7.4, we obtain for all yI'; € m;(A) that

Us
Z ATy A " Ex=tyDy || = Z ayr Al

el 1 xer

= [0 O (o D) -2+ (s, D
ST IfI- H(Xn,jl(qri)’ 1) (xa, l)Hl
1

1

[ (e

Hence, ||f(&)r| < |||l

7.3. From adapted embeddings to homology retracts. The following theo-
rem shows that adapted embeddings allow to construct suitable homology retracts
(and so estimates on the dimensions and the torsions).

Theorem 7.6. In the situation of Setup 7.1, let C, be a free ZT' -resolution of Z
that has finite rank in degrees < n + 1 and let f.: Cy — D, be a I'y-adapted -
embedding. Then, for all large enough i € 1:
(i) The complex D, (i) is defined up to degree n+1 and the Z-module H,(T';; Z)
is a Z-retract of Hyp (D« (9)r).
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(ii) In particular, we have
tky Hy(T; Z) < [I': Ty] - dim(D,,)
and, in the case of Z = 7, we additionally obtain
log # tors H,(T';; Z) < log # tors(Dy, (i)r/im 0%, (i)r).

Proof. Let § € Ry and let f.: C, — D, be such a I',-adapted a-embedding.
Let I’ C I be the set of all i € I such that all of the (finitely many!) cylinder
sets appearing up to degree n + 1 in D,, 9P and f. come from I'/T";. Then I’ is
non-empty and upwards-closed in 1.

For ¢ € I’, the complex D, (i) is defined up to degree n + 1 and augments to L;.
Moreover, we write C, (i) for the R;-chain complex (R ®zr C.)(i) Zg, R; Qzr C..
As R; is flat over ZT', this gives an R;-resolution of R; ® zr Z =g, L;. Because
fv: C« — D, is S;-adapted, we obtain a corresponding R;-chain map f.(¢): C. (i) —
D, (i) extending idy,:

c.@) % D)
| |
L ——— I,

We now make use of the fact that the left hand side is a resolution to obtain
the desired retract: By the fundamental lemma of homological algebra, there is an
Ri-chain map g.(i): D.(i) — C.(i) extending idr, and g.(i) o f.(i) ~g, idc, ).
Taking I'-coinvariants shows that hence H,(C.(i)r) is a Z-retract of H,(D.(i)r).
Moreover,

H,(T;; Z) =5 H,((Z[T/T;] @z Ci)r) (Shapiro lemma)
=, H,((Li ®z Ci)r) =2z Hyn((Ri @zr Ci)r)
~, H, (C.(i)r).

This proves the first part.
For the second part, we obtain from the retract in the first part and elementary
properties of rky that

I‘kZ Hn(l“l, Z) S I‘kZ Hn (D*(Z)F) S I‘kZ Dn(l)p
Moreover, in the case Z = Z, we obtain
log # tors H,, (T';; Z) < log # tors H,, (D* (z)r) < log # tors(Dn(i)r/ im GEH (z)p) ,

as claimed. O

7.4. Logarithmic torsion estimates. The goal of this section is to establish a
logarithmic torsion growth estimate for cokernels in terms of the logarithmic norm:

Theorem 7.7. In the situation of Setup 7.2 (with Z = Z), let f: M — N be
a T'y-adapted R-homomorphism between I'.-adapted marked projective R-modules.
Then

y log # tors(N(i)p/ im f(l)p)
im sup

01 T, < lognorm(f).

The proof relies on Gabber’s estimate for the torsion in cokernels and the fact
that the logarithmic norm of adapted homomorphisms can be computed via adapted
decompositions. We will use the following version of Gabber’s estimate for the
torsion part of cokernels.
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Proposition 7.8 ([Sou99, Lemma 1]|[Saul6, Lemma 3.1]). Let M and N be finitely
generated marked free Z-modules and let f: M — N be a Z-homomorphism. Then

log # tors(N/im f) < > "log, || f ()],

beB
whenever B is a subset of the marked Z-basis of M such that {f(b) | b € B}
generates C @z im f over C and where || - ||1 refers to the £*-norm with respect to

the chosen basis on N.

Proof. The classical torsion estimate is log # tors(N/im f) < >, _plog, ||f(b)||2,
where ||-||2 is the £2-norm with respect to the chosen basis on N [Saul6, Lemma 3.1].
Because of || - |]2 < || - ||1, the claim follows. O

Corollary 7.9. Let M, M’', N be marked finite rank free Z-modules and let f: M &
M' — N be Z-linear. Moreover, let M =g @, ; M; and M' =z @, ; M| be
marked decompositions; for each i € I let N; C N be a marked direct summand
with f(M;) C N;. Then

log # tors(N/im f) < 3 kg (Ni) -log, [1f|ar, || + D rka (M) -log || flar-
il i€l

Proof. For each i € I, let B; C M; be a subset of the marked basis such that {f(b) |
b € B;} generates C ®yz f(M;) over C. For each i € I, let B] C M/ be the marked
basis. Then B = |J;c; B; U ;e B is a subset of the marked basis of M & M’
such that {f(b) | b € B} generates C ®z im f over C. Therefore, Proposition 7.8
shows that

log # tors(N/im f) < Z log [I£(0)[|x

beB
<D logy O+ DD logy 1)k
i€l bEB; i€’ beB]
< S #B; log, || flas |l + S #B.-log, || flar
i€l i€l
< Zrkz ) log || f ||l + Zrkz ) -log |1 flmll;
i€l i€l
as desired. g

To prove Theorem 7.7, we show the following version in which the limsup is
unfolded into an explicit statement:

Theorem 7.10. In the situation of Setup 7.2 (with Z = Z), let f: M — N be
a T'y-adapted R-homomorphism between T, -adapted marked projective R-modules.
Then, for all € € Rsq, we have for all large enough i € I:

log # tOI‘S(N(i)F/ im f(’L)F)

< lognorm(f) + ¢.

Proof. The subalgebra S is dense. Thus, we use the description of lognorm in terms
of cylinder sets (Proposition 6.9) and the generic torsion estimate for cokernels
(Corollary 7.9).

Let ¢ € Rsyg. By Proposition 6.9, we find an S-adapted marked decomposi-
tion (Mj)je] S Ds(M) with

lognorm’(f, M) < lognorm(f) +e.
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Then, for all large enough i € I, the decomposition M,, as well as M, N, and f all
are S;-adapted. We split J = J’LIJ" according to the branches of lognorm’: Let J’
be the set of all j € J with

lognorm'(f|ar,) = rk(fln;) - logy || fas; I

moreover, we let N; C N be a marked summand satisfying f(M;) C N, and
dim(N;) <rtk(f) +e/#J. Let J" == J\ J".

Using Corollary 7.9 and the dimension/norm compatibility (Remark 7.4, Re-
mark 7.5), we thus obtain

log #tors(N(i)p/ im f(z)p)
<Y rkz Nj(i)r -logy [ f(D)rlar el + D tkz M;(i)r - log, || £(i)r|a, iy |

JjeJ’ jeJ”

< Y O[0:Ty)-dim Nj -log, || flag [l + D [[: Ty] - dim M -log, || £, |
jeJ’ JjeJ”

< YO0 T3 0k flag, +¢/#7) - log | flag ||+ D [0 Ty] - dim M; - log, || f|as, |
JjeJ’ jeJ”

<[:Ty- (lognorm’(f, M,) +¢€-log, ||f||)
< [P: T3] - (lognorm(f) + & + ¢ - log, || ]])-

Rescaling e appropriately gives the claim. O

This completes the proof of Theorem 7.7.

8. PROOF OF THE DYNAMICAL UPPER BOUNDS

We give proofs for the upper bounds of homological invariants in terms of mea-
sured embedding dimension and measured embedding volume (Theorem 1.2 and
Theorem 1.3). The key intermediate step is to write the homological terms in
question as retracts of the corresponding homology of suitably adapted dynamical
embeddings.

For convenience of the reader we recall the definitions of measured embedding
dimension and measured embedding volume from the introduction. Let n € N,
let ' be a residually finite group of type FP,,41, and let a be a standard I'-action.
We denote by A, (a) the class of all augmented complexes arising in a-embeddings
(up to degree n). Let Z be Z or a finite field. We have the following:

e The measured embedding dimension medim? (o) over Z in degree n is de-
fined as:

dim? () = inf dimp(Dy,).
medim;, (@) (D*—»Loc(lil,z))eAn(a) img(D,,)

e The measured embedding volume mevol, (a) in degree n for Z = 7 is defined
as:

mevol, (a) == lognorm (9, ;).

inf
(De—~>L>(a,Z))EAR(a)

8.1. Homology gradients. In this section we prove Theorem 1.2 that we restate
here:

Theorem 8.1 (dynamical upper bounds). Let n € N, let T be a residually finite
group of type FP,, 11, let (T';);er be a directed system of finite index normal subgroups
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of T' with (;c; i = 1 (e.g., a residual chain in ' or the system of all finite index
normal subgroups), and let Z be 7 or a finite field. Then:

by (D, T, Z) < medim?(I' ~ T,)
4, (T,T.) <mevol, (' ~T,) (if Z="17).
The proof relies on the following input from previous sections:

Setup 8.2. Let n € N, let I' be a residually finite group of type FP,, 11, let (I';);ers
be a directed system of finite index normal subgroups of I' with (., I'; = 1, let

a: T ~ T, be the associated dynamical system, and let Z be Z or a finite field.

Theorem 8.3. In the situation of Setup 8.2, let C, be a free ZT' -resolution of Z
that has finite rank in degrees < n+1 and let f,: Cy — D, be an a-embedding. Then
there exists a K € Rso such that: For every § € Ry, there exists a I',-adapted
a-embedding Cy — D, with

d&y(D,, D,,n) < 6.

Proof. This is the special case of Theorem 5.10 for the action I' ~ T, and the
subalgebra of all cylinder sets. O

Theorem 8.4 (Theorem 7.6). In the situation of Setup 8.2, let C\ be a free ZT'-
resolution of Z that has finite rank in degrees < n+ 1 and let f.: C, — D, be a
Ty -adapted a-embedding. Then for all large enough i € I, we have

rky Ho(T; Z) < [[: Ty] - dim(D,,)
and, in the case Z =7,
log # tors H,,(I';; Z) < log # tors(D,, (i)r/im a2, 1 (i)r).

Theorem 8.5 (Theorem 7.7). In the situation of Setup 8.2, let f: M — N be
a T'y-adapted R-homomorphism between I'.-adapted marked projective R-modules.
Then

lim su log # tors (N (i)r/ im f(i)r)
e [I': 1]

< lognorm( f).

Proof of Theorem 8.1. We spell out the proof for tn. The proof for the Betti gra-
dients works basically in the same way. Because I' is of type FP,, 11, there exists a
free ZI'-resolution C, of Z that has finite rank in degrees < n + 1. By definition of
the measured embedding volume, it suffices to prove the following: If f,.: Cy — D,
is an a-embedding, then

t,(I,T,) < lognorm(9;, ;).

Thus, let f,: Cx — D, be an a-embedding. In view of Theorem 8.3, there exists
a constant K € Ry such that: For every § € Ry, there exists a I'.-adapted
a-embedding C, — D, with

d&4(D,,D,,n) <.

Let § € Ry and let f*: C, — lA)* be such a I',-adapted a-embedding. Combin-
ing the retracts for D, from Theorem 8.4 and the logarithmic norm estimates from
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Theorem 8.5, we obtain

i 1 sH,(T;: 7
tn(ryr*)thsup Og#tors n( 79 )

il [I': Iy]
< lim sup log # tors (ﬁn(l)r/ i 37%1(2')1“) (Theorem 8.4)
il [T
< lognorm(@’?“) (Theorem 8.5)
< lognorm(92, ;) + ¢ - log, K. (Proposition 6.4 (v))
Taking § — 0, we get the desired estimate %, (I, ') < lognorm(92, ,). O

8.2. L?-Betti numbers. Analogously to the retraction argument for the gradient
estimate, we can apply the retraction argument also on the level of von Neumann
algebras. This leads to the L2-Betti number estimate (Theorem 1.3).

Theorem 8.6. Letn € N, let I" be a group of type FP, 11, and let a be a standard
T-action. Then:

b (') < medimZ ().

Proof. We write R := R, for the orbit relation of o and use the following description
of the L?-Betti numbers [Sau05]:

b)) = dimyg H,(T; NR).
Let C, be a free ZI'-resolution of Z that has finite rank in degrees < n + 1

and let f,: C, — D, be an a-embedding. It suffices to show that b(2) () <
dim oo (q)sr(Dn). Let C, = (L®(a) *T) @zr C, and let f.: C. = D, be the
chain map induced by f,.

Because L>(a) * I is flat over ZI' (Proposition 2.10), C, is a free L>(a)  I'-
resolution of L>°(«a). Therefore, the fundamental lemma of homological algebra

provides us with an L> () * -chain map §,: D, — C, (up to degree n + 1) that
extends idpe () and that satisfies

/g\* © f* Lo (a)xD ldA

Finally, we pass to the level of the von Neumann algebra NR: Let C, =
NR@LOQ (a)*T C NR NR Qzr C*, let D* =NR ®Loc(a) T D*, and let

f* = 1dN7?,®f*: C* — -D*7
idNR ®§*2 5* — 5*

gs
In particular, we obtain g, o f* ~yr idg from the corresponding relation be-

tween g, and f,. Therefore, H,(C.) is an NR-retract of H,(D,) and the properties
of dimyg [Sau05] show that

b)) = dimyg H,(T; NR)

= dimyg H,(NR @zr C,) = dimyg Hy, (C,) (by definition)
< dimyg Hn(D.) (by the retract)
< dimyg D,, (properties of dimyg)

= dimL‘X’(a)*F Dy,.

Taking the infimum over all a-embeddings proves the claim. O
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Part 2. Examples

We provide examples and computations for the measured embedding dimension
and volume:: in degree 0 (Section 10), for amenable groups (Section 11), for amal-
gamated products (Section 12), for products with an amenable factor (Section 13),
and for finite index subgroups (Section 14).

Later we will give further examples, especially on hyperbolic 3-manifolds (Sec-
tion 18.5 and Section 20.2), using dynamical inheritance properties established in
Part 3.

9. BASIC PROPERTIES
We collect some basic properties of medim and mevol.

Setup 9.1. Throughout, let Z be the integers (with the usual norm) or a finite
field (with the trivial norm).

Lemma 9.2. Letn € N and let I' be a group of type FP,, 1. Let o be a standard
T-action. Let Z be a finite field (with the trivial norm). Then

.....

Proof. Let Cy, — D, be an a-embedding over Z. Then Z ®z C is a ZI'-resolution
of Z because C is contractible as a Z-chain complex. Hence Z ®7 C, — Z Q7 D,
is an a-embedding over Z with
dimp e (o, 2)«0(Z @z D) = dimpeo(q,z)(Dy).

This proves the claim. U
Lemma 9.3. Let n € N and let ' be a group such that there exists a finite free
ZI -resolution of Z of length n. Let a be a standard T'-action. Then

Vpsn medim?(a) =0

Vy>n mevol,(a) = 0.
Proof. By Lemma 9.2, we may assume that Z = Z. Let C, be a finite free ZI'-
resolution of Z of length n. Then D, = Indér (e)x C, is a marked projective
chain complex augmented over L*°(«). The canonical ZI'map C, — D, is an
a-embedding. By construction, we have D,. = 0 for all » > n. Hence for all > n,
we have

medim?(a) < dim(D,) = 0.
For all r > n, we have
mevol,(a) < lognorm (9 ;) < dim(D,11) - log, |02 ]| = 0.

This finishes the proof. O

10. DEGREE 0

We show that every standard action of an infinite group has medim and mevol
equal to zero in degree 0.

Proposition 10.1. Let T" be a finitely generated group with finite generating set S.
Let (Cy,C) be a free ZT-resolution of Z with 01: C1 — Cy given by

Oh: @ZF ces = LT, O1(es) =1p — s.
seS
Let a: T ~ (X, p) be a standard action. Then the following are equivalent:

(i) The group T is infinite;
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(ii) For every e € Rsg, there exists an a-embedding C. — D, with dim(Dy) < &
and ||0P] < 2;
(iii) For everye € Ry, there exists an a-embedding C, — D, with dim(Dg) < €.

Proof. We show that (i) implies (ii). Let ¢ € Rsg. Since I' is infinite, there
exists a measurable subset A of X and a finite subset F' of " with u(A) < e/2 and
WX\ F-A) < e/2[Lev95, Proposition 1]. Set B := X\ F-A. The L*°(a)*I'-module
Dy = (A) @ (B) satisfies dim(Dy) < €. Let n: Dy — L°°(«) be the L () *-linear
map that sends x4 to x4 and xp to xp. We construct an element x € Dy with
n(z) = 1 as follows. Denote the elements of the finite set F' by ~1,...,7k. Set
Ay =y -Aand 4; =1; ‘A\Uin;llAm for j € {2,...,k}. Then I_Ié?zlAj =F.A
The element

k
zi=) 7 "Xyta, XAt XB € Do
j=1

satisfies n(x) = 1 by construction. Then there is an a-embedding (in low degrees)
given by

- —— Bucg (X) -es —— (A) @ (B) —— L®(a)
f1T . fo]\ ]\
s @, g2 ey — I — 5 7,
where
P (e) = (Ip — s)x;
Jo(lp) = z;
fi(es) =es

Clearly, (ii) implies (iii). We show that (iii) implies (i). Suppose that I is finite. We
show that every a-embedding (C., () — (D.,n) satisfies dim Dy > 1/#I". Indeed,
let Dy = @,; (Ai) and let 2 € Do with n(z) = xx. We write . = Y, gi - x4, "€
for some g; € L () * I". Then

Xx =n(@) =>_gi-nlxa, e
iel
Since supp(n(xa4,) - €i) C A;, we conclude
1<) #T - p(Ai)
iel
and the claim follows. O

Corollary 10.2. Let T be a finitely generated infinite group and let o be a standard
action of I'. Then

medimZ (o) =0 and mevoly(a) = 0.

Proof. By Lemma 9.2, we may assume that Z = Z. Then this is a direct conse-
quence of Proposition 10.1 and the definition of the measured embedding dimen-
sion/volume. O

11. AMENABLE GROUPS HAVE CHEAP EMBEDDINGS

We show that every standard action of the integers and, more generally, of an
infinite amenable group has medim and mevol equal to zero in all degrees.
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11.1. The integers.

Setup 11.1. We consider the infinite cyclic group I' :== Z = (¢) and a standard
action a: T' ~ (X, ). Given 6 € Ryg and N € N, by the Rokhlin lemma [KMO04,
Theorem 7.5], there exist measurable subsets A, B C X with p(B) < § such that

X=AutAuttAu.---utV"'AuB.
Clearly, pu(A) < 1/N. Since X =tX, we have
(11.1) AuB=tNAUtB,

a fact that will be used repeatedly in the sequel.
Consider the marked projective L («) * I'-module (A4) & (B) and define the
element

2
L

x4+ xp € (A) @ (B).

8
I

I

o

J
Proposition 11.2. In the situation of Setup 11.1, there is an L>°(a) *T'-resolution
of L™ («) of the form
0— D1 25 Dy 2 L®(a) — 0,

where Dy = Dy = (A) & (B) and the L (a) x T-linear maps n and &1 are given on
generators by

n(xa) = xa;

n(xs) = xB;

d1(xa) = xa(t® —th)m;
(xs) =xp(t’—t"x

Proof. First of all, (D,,n) is an augmented chain complex, since we have
n(@1(xa)) = n(xalxa + xz = t"xa — txn))
= xa(xauB — Xivaues) =0

and similarly 7(01(xp)) = 0. Moreover, 7 is surjective since n(z) = xx.
We show that (D,,n) is a resolution by exhibiting an L («)-linear chain con-
traction ¢, : Dy — Dyqq.

0 —— (A) & (B) —— (4) & (B) —— L¥(a) — 0
\/ &C_/
co -1
Define the L% («)-linear maps ¢y and ¢; on generators by
co1(xx) = ;
. (thA) ) xema Z;r;iol thA — Xtm A Z;r;iol thB if m > 0;
0 = S i .
Xem A Zj:lm t'xa+ Xima Z]:lm t'xB if m <0
co(t™x ) = —Xtm B Z;n:_ol tIxa—ximB Z;n:_ol t'xp ifm>0;
0 B) = g L )
Xtm B ijlm t!xa+ ximB ijlm t!xB if m < 0.

We verify that c, is a chain contraction: First, we clearly have noc_; = idpe(q)-
Second, we have to show that 01 o co = id(a)g(By —c—1 0 7. Indeed, for m > 0 we
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have

O1 (et xa)) = —xima (Z ) + ) - e

m—
:_XWA( ﬁ)uo—ﬂm
=0

= —xma(t’ —t™)x

= —Xtm AT + xgmat™'T

= —n(t"xa)r +t"xax
—c_1(n(t"™xa)) + " xa

and similarly for m < 0. The calculation that 01 (co(t"xB)) = t"xp—c—1(n({t"™xB))
for all m € Z is analogous.
Third, we have to show that cg o 91 = id(4)g(py- Indeed, for m > 0 we have

co(D1(t™xa)) = co(t™xalxa+ x5 —t"xa—txB))

(tm+N XB))

(tm+1

= xema(co(t™xa) — co X4) — o

m—1 m+N-—1
= XtmA (-Xth >t (xa+xs)+xemtva Y, t(xa+xs)
=0 =0

+ Xem+1p Z t(xa + XB))
3=0

m—1 m+N-—1
= XtmA <Xth Z t(xa + xB) + Xpm+na Z t!(xa + xB)
7=0 j=m+1

m
+ (Xgm+~a + Xpmt+1) Z t(xa + XB))
=0

m—1 N—-1
= XtmA <Xth Z t/(xa +xB) + Xpmnat™ Z t/(xa +x5)
7=0 j=1
m
+ (Xtma + XtmB) Z t(xa+ XB))
=0

N-1
= XtmA (Xtm+NAtm Z txB + thA>
j=1
=1t"Xxa,
where for the last equality we use the following Lemma 11.3, and similarly for m < 0.
The calculation that co (01 (t™xg)) = t"™xp for all m € Z is analogous. This finishes
the proof. O

Lemma 11.3. For all j € {1,...,N — 1}, we have
ANtNANtYB = 0;
BntNAN# B = .

Proof. We only prove the first statement, as the second is proved similarly. We
proceed by induction on j. For j = 1, we have tYANtB = (). Assume for
all j € {1,...,N —2} that ANtYNANt'B = (. Let b € B. We have to show that
tN"1b g ANtVA. We have tb € tB C AUB. If th € A, then tN~1b € tV =24 and
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hence tV=1b ¢ ANtVA. If tb € B, then tV~1b € " ~2B and hence by induction
tN=1b g ANtV A. O

Corollary 11.4. Let « be a standard action of Z. For every n € N, we have
medim?(a) =0 and mevol,(a)=0.

Proof. By Lemma 9.2, we may assume that Z = Z. Since the group I' := Z is of
type F, there exists a finite free ZI'-resolution C, of the trivial ZI'-module Z. The
L*>°(a) * I'-resolution (D,,n) from Proposition 11.2 satisfies

dim(Dg) = dim(D;) = u(AUB) <1/N+46 and |4 <2.

By the fundamental lemma of homological algebra, there exists an L% («) * [-chain
map fi: L®(a) @z Cyx — D, extending idpe(a)- (Since both L*®(a) ®7 C, and D,
are projective resolutions, the map f, is in fact a chain homotopy equivalence.)
Then the composition

C, — L®(a) ®7 C, 15 D,

is an a-embedding. O
We describe an explicit a-embedding for a standard action of Z.
Example 11.5. For I" := Z = (t), we consider the usual ZI'-resolution C,
0—=2I' =721 - 7Z — 0
and the induced L*°(«) * T-resolution L>®(a) ®z C.

C
0 = L®(a) @z ZT 2 L®(a) @z ZT % L®(a) @7 Z — 0,
where

¢(t%) = xx;
(%) =0 — ¢
In the situation of Setup 11.1, let (D.,n) be the L>°(«) * I'-resolution from Proposi-
tion 11.2. We exhibit chain maps fi: L=(«a) ®7 Cy — D, and ry: D, — L®(«a) @y
C. and a chain homotopy h,: L (a) ®z Cx — L (a) ®z Cy11 between 7, o f, and
idL‘X’(a)@ZC*:

) AV @ (B) — s L%(a) ——— 0

Y@ (B
e el T

0 —— L®(a)®z Z0 — [®(a) @z ZI' —— L®(a)®7 Z — 0

\_/\/

h() h71

0— (4

The L*°(«) # T'-chain maps f, and r, are given on generators by

fo(t°) =2 (where x is defined as in Setup 11.1);
fi(to) = xa + xB;

ro(xa) = xa ®1t7;

ro(xp) = XB ®t;

ri(xa) = xa;

r1(xB) = XBT,
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where T € L (a) ®z ZT is defined as

N-1
7= ZXtNA®tj+XtB®tO-
=0

Indeed, f. and r, are chain maps, the only non-obvious identity being the following:

dY (r1(xa)) = 0f (xaT)

1

= XA( AR — ) 4 xep @ (0 — tl))
J

2

I
=)

=xalxeva @t = xv g @Y +xip @10 — xi5 @ 1)
= xaxa @t +xp @ t° — xv 4 @ N — xup @ 1)

= xaro(xa + x5 —t"xa —txp)

= ro(xa(t’ —t")z)

7007 (xa))

and similarly 9 (r1(xg)) = ro(0P(x5)). The L*(a) % I'-chain homotopy h. is
given by h_; = 0 and

N-1 1
==Y > xwa®th.
§=0 k=0

We have
N—-1j—1
of (ho(t°)) = — Xera ® (tF — 1)
j=0 k=0
N—-1
= - thA®(tO*tJ)
j=0
N—-1
= xa®t® =) xpa @t
j=0 j
N-—1
= t'xa @t +xp @t —1°
=0
=ro(z) —t°
=ro(fo(to)) — t°
and
ho(9F (°)) = ho(t° — t*)
N—-1j-1 N-1j-1
Xeoa @+t YN xpatf
7=0 k=0 7=0 k=0
N—1 N—1
= thA®t +ZXtNA®t
j=1 k=1
=74

=ri(f1(t%)) —t°.
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Finally, we note that the operator-norms of the above maps satisfy the following
estimates

[ folls [[f2lls Mol < 15
[l < NV

o]l < N2.

11.2. Amenable groups. We prove that standard actions « of infinite amenable
groups have medim and mevol equal to zero in all degrees. We do so by constructing
a-embeddings with arbitrarily small dimension and lognorm, to which we refer
as “cheap” a-embeddings. We first develop some general preparations. Given a
matrix A over ZI' and a marked projective module D, we construct a marked
projective module Dy and a map Dy — D; given by right multiplication with A
such that dim(Ds) is controlled by dim(Dy ).

Remark 11.6. Let A = (\ij)(;,j)erxs be a matrix with entries in ZI'. We set

K(A) = max |Ajjl1.
/L’]

Then [Aij[1 > max{|Aij|oo, #suppr(Aij)}. Let f: @,c; (Ai) = Djey(Bj) be a
map between marked projective modules given by right multiplication with the
matrix A. Then by Lemma 2.31 we have

1l < No(f) - I flloc < m(A)? - 4.

The upper bound k(A)?-#.J for || f| is very coarse but depends only on the matrix A
and not on the sets (4;); and (B;);.

Lemma 11.7. Let T be a group and let a: T ~ (X, u) be a standard action.
Let I and J be finite sets, let A = (N\ij)@i.j)erxs be a matriz with entries in ZI,
and let (Bj)jes be a family of measurable subsets of X. Then there exists a fam-
ily (Ai)icr of measurable subsets of X with

p(A) < k(M) u(By)
jeJ
and an L>(a) * I-linear map f: @;c; (Ai) = D, (Bj) given by right multipli-
cation with A satisfying
IFIl < £(A)? - #7

Proof. For ¢ € I, we consider the element

Yyi = Z)\ij XB;€j € @ (Bj).
jed jed
By construction, the subset A; := supp; (y;) C X satisfies p(A;) < k(A)->_ ;¢ ; u(By).
The map f: D,;c; (Ai) = @B;cs (B;) defined by f(xa,ei) = yi is a well-defined
L>(a) # I-linear map and is given by right multiplication with A. The map f
satisfies || f|| < w(A)? - #J by Remark 11.6. O

We denote by C.>1 a chain complex that is concentrated in degrees > 1.

Lemma 11.8. Let Cy>1 be a free ZI'-chain complex with C), = EBIk ZI' and 8,?
given by (right multiplication with) a matriz Ay. Let n € N and suppose that I}, is
finite for all k < n. Let (B j)jer, be a family of measurable subsets of X. Then
there exists a L°°(a) *'-chain complez D>1 with D1 = @ ;;, (B1,;) satisfying for

allk <n
k

dim(Dy) < dim(Dy) - ] #(Am) - #1m

m=2
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and

1077 < s(Aw)? - # ks
and there exists an L (a) xI'-chain map fi: L®(a) ®z Cyx — D, given by fr(e;) =
XBy,,; €i-

Proof. We construct D,, 0P, and f, inductively. Set D; = @je 1, (B1,;) and
fi(ej) = xB, ;€. Lemma 11.7 yields a module Dy = @, , (B2:) with dim(Dy) <
dim(Dy) - k(Ag) - #I5 and a map 0P : Dy — Dy with ||0F| < k(A2)? - #I;. Set-
ting fa(e;) = XB,.€, we have f; 0 9§ = 9% o fo. We apply Lemma 11.7 in-
ductively to obtain D,,, 02, and f,, with the desired properties. For k > n + 1
and i € [}, we simply set By ; :== X and Dy == @;c;, (Br.i). For Ay = (Ai5), we
set 0P (B, .€i) = D jel, s Mevij tXBy 1 ,;€j- We have thus constructed a commuta-
tive diagram

op ab op

e @y, (X) — Bicy, (Bui) —— - — Bjey, (Buy)

fn+1T fnT flT
c c

BC
e L°(a) @7 Ot~ L0(a) @7 Cp —s - 2y L%(a) @7, Cy

Note that (D, dP) is indeed a chain complex; for every k > 2 we have 9P ,09P =0
because fj is surjective and 95 | 0 95 = 0. O

The point of Lemma 11.8 is that to construct a cheap a-embedding f.: Cyx —
D, it suffices to construct D,<; with dim(D;) arbitrarily small and f.<; with f;
being the obvious projection. For amenable groups this can be achieved using the
following strong version of the Rokhlin lemma.

Theorem 11.9 (Rokhlin lemma, [CJKT18, Theorem 3.6]). Let I' be a countable
amenable group, let a: T ~ (X, ) be a standard action, let F C T be a finite set,
and let 5 € Rsg. Then there exists a pu-conull I'-invariant Borel set X' C X, a
finite set J, a family (A;);jcs of Borel subsets of X', and a family (T}),cs of (F,0)-
invariant non-empty finite subsets of I' such that (T - x)jcjcca, partitions X'.

Here T; being (F, ¢)-invariant means that
#(F - T;AT;)
#T;
Remark 11.10. If T is infinite and F contains a generating set, we have 1/#7T; < 0
for all j € J and hence

M(U Aj) <> u(4y) :Z#% (T - Aj) <6 Ty - Ay) = 6.
jeJ jeJ J

JjeJ jeJ

<.

Theorem 11.11. Letn € N and let I be an infinite amenable group of type FP,, 1.
Let a be a standard T-action. Then there exists K € Rsq such that for every e €
Rso, there exists an a-embedding C. — D, such that for all r € {0,...,n+ 1}, we
have dim(D,.) < ¢ and ||0P] < K.
In particular, we have:
vré{O,...,n—&-l} medimrz(a) = 0;
Vreqo,...,ny mevol.(a) = 0.

Proof. By Lemma 9.2, we may assume that Z = Z. Let S be a finite generating
set of I'. There exists a free ZI'-resolution (C,, () of Z of the form

s 8¢
.--%@Zré@zr—wzréz—m
Iz I
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with I} = S, 9 (es) = 1r — s, and I}, finite for k < n+1. We construct a chain map
L>(a) ®z C. — D, from which we then obtain a “cheap” a-embedding C, — D,
by composition with the canonical map C, — L*®(«a) ®z C,.

Step 1: x < 1. This step uses the amenability of I" and the Rokhlin lemma.
Let F == SUS™! c T and let 6 € Ryg. Theorem 11.9 yields a finite set .J, a
family (A;);jes of measurable subsets of X, and a family (7j);es of finite (F,d)-
invariant finite subsets of I' such that (T} - x);e 24, is a partition of a p-conull
subset of X.

The set By = U;c;A4; C X satisfies u(Byg) < ¢ by Remark 11.10. Hence
Dy = (By) satisfies dim(Dg) < 6. We consider the element

r= S € (),
JEJLET;
For s € S, let By s :== supp;((1r — s)z) C X. We claim that u(B,s) < 26. Indeed,
let T s == s-T;AT; C T and observe that
#Tj,s = #(sT; \ Tj) + #(T); \ sTj)

= #(sTy \ Ty) + #(s7'T; \ Ty)

< 2#(FT; \ 1)

< 264T.

Since Bi,s C Uje s User, , t4;, we have

p(Brs) <Y Y wltdy) = #Tjs - n(Ay) <26 #Ty - p(4;) = 26.
JET T, jed jed
Hence Dy = @, (B1,s) satisfies dim(D;) < 26 - #8S.
Define the L> () -linear map 0 : Dy — Do by 07 (x5, .) = (1r — s)a, which
satisfies [|0P] < 2.
Then the following diagram commutes

D.cs (Bis) o (By) ——— L=(a)
fJ o foT idT

L®(a) @z Dg ZI —— L®(a) @7 ZI' —— L=(a)

where fo(1r) =z and fi(es) = xB, ,es. We have n(x) = xx by construction, and
no 0P =0 because f; is surjective and ¢ 0 8¢ = 0.

Step 2: * > 2. For k > 2, suppose 0 is given by (right multiplication with)
the matrix Ay. Then Lemma 11.8 yields a chain complex D,>; satisfying

n

dim(Dy,) < dim(Dy) - [ w(Am) - #Lm < 26 - #S - f[ k(M) - #1,,

m=2 m=2
and
||8w?+1” < K(Apg) - #1n

and a chain map f.>1: L(a) ®z C. — D,. Note that D,>¢ is indeed a chain
complex; we have 9P o 92 = 0 because f5 is surjective and 9 0 95 = 0. g

Remark 11.12. Since all standard actions of countable infinite amenable groups
are orbit equivalent [OW80, Theorem 6], if Theorem 1.9 could be extended to all
orbit equivalences (instead of only weak bounded orbit equivalences), then Theo-
rem 11.11 would be a direct consequence of Corollary 11.4.
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Remark 11.13. Let I" be an infinite amenable group. By Example 15.5, all
probability measure preserving actions of T' are weakly equivalent (see Defini-
tion 15.1). Thus, Theorem 15.30 yields that it suffices to show the vanishing
of medim and mevol for a single standard action of I'.

12. AMALGAMATED PRODUCTS

12.1. Amalgamated products. We prove inheritance properties of medim and
mevol for actions of amalgamated products. Let Z be the integers (with the usual
norm) or a finite field (with the trivial norm).

Recall that the mapping cone Cone(p). of a chain map ¢.: D, — E, is the
chain complex with chain modules

Cone(p)n, = D,—1 ® E,
and differentials 0, : Cone(y),, — Cone(y),—_1 given by

On(x,y) = (=07 1(2), 07 (y) + pn-1(2)).

Lemma 12.1. Let R be the ring L= («) «T'. Let p.: D, — E, be a map of marked
projective R-chain complezes. For all n € Z, the following hold:

(i) dimp(Cone(p)y) = dimpg(Dy—1) + dimg(Ey);

(ii) lognorm (95" < dimp(D,—1) -1og . (|02 ]| + [[¢n-1]) + lognorm(9Z).

Proof. (i) This is clear by the definition of Cone(f),.
(ii) Using properties of lognorm (Proposition 6.4), we have

IOgHOTHl(aSOHe(W)) < lognorm(agone(‘m |Dn—1 ) + lognorm(ar(l]one(ﬂﬂ)

E.)

< lognorm(Dy—1 — Dy_o @ Ep_1, 2 (=0 | (z), n—1()))
+ 1ognorm(En = Dp o ® Ey1,y+ (0, 85(9)))

< dimp(Dn—1) - log, (1051 [| + [ on—1]]) +lognorm(d;)

as claimed. O

An amalgamated product is a pushout of groups along injective structure maps.

Proposition 12.2. Let I' =2 I'y s, I's be an amalgamated product, where I'; is
of type FP fori € {0,1,2}. Let a: T' ~ (X, ) be a standard action. For i €
{0,1,2}, we write a;; == a|p,: T; ~ (X, u) for the restricted action. For alln € N,
the following hold:

(i) medim? (o) < medim? (a;) + medim? () + medim?_ | (vg);
(ii) If Ty =2 {1} and n > 1, then mevol,(a) < mevol,(ay) + mevol, (as);
(i) If Ty = Z, then mevol,(a) < mevol, (o) + mevol, (as).

Proof. For i € {0,1,2}, let f(i)s: C(i)x — D(i)« be an «;-embedding. It follows
from the short exact sequence of ZI'-modules

0— Z[I'/Ty] = Z[T/T1|® Z[T/)T2] = Z — 0
that there exists a ZT'-chain map

g«: IndZp, C(0), — IndZr, C(1), & Ind7p, C(2).



THE CHEAP EMBEDDING PRINCIPLE 63

such that C. = Cone(g). is a free ZI'-resolution of Z. Consider the following
diagram of L*(«a) * I'-chain complexes:

L% (a)+T 0. L™ (a)+T L™ (a)+T
Indy (0030 D(0). 25 » Indy (o5, D(1). @ Ind7 (031 D(2), ———— D

Ind f(t)ﬁ >r<o>* Ind f(l»esmdf@)ﬁ

Tnd5 (" €(0), 22 Wdlr T O(1). @ Ind, @ €(2), — Tndl @ C

Here

7(0). is a homotopy left-inverse of Ind f(0).;

v« =1Ind f(1). ® Ind f(2). o Ind g, 0 r(0).;

D, := Cone(p).;

the right vertical map is induced by functoriality of the mapping cone (in-
volving a homotopy making the left square commutative).

Then the composition
C, —»Inds " c, - D,
is an a-embedding. Since

. L (a)*I . . .
dlmLm(O‘)*F (IndL‘X’EaZ)*Fi D(Z)") = dlmLm(ai)*Fi(D(Z)n)7

part (i) follows from Lemma 12.1 (i).

For part (ii), assume that T'g is the trivial group and n > 1. For i € {1,2},
we fix ay-embeddings f(i).: C(i)x — D(i)«. Let C(0). — D(0). be the obvious
ap-embedding concentrated in degrees < 0. For brevity, we write Ind instead

of Indizgzzﬁ}l Then, since dim(D,,) = 0, Lemma 12.1 (ii) yields

lognorm (9}, ;) < lognorm(Ind 854(_11) @ Ind 85_521))

< lognorm(Ind ol

1) + lognorm(Ind 6D(2))

n+1
< lognorm(af_éll)) + lognorm(afﬁ))-

Here the last step uses Lemma 6.5 (i).

For part (iii), assume that Iy = Z. For i € {1,2}, we fix a;-embeddings
f(@)s: Ci)x — D(i)s. Let C(0). be the usual free ZI'p-resolution of Z and let K €
N be large. By Example 11.5, there exists an ag-embedding C(0). — D(0).
satisfying ditmze (a,).r, (D(0);) < 1/K, |87 < K, and [r(0);] < K. Then
Lemma 12.1 (ii) yields

lognorm(9;,1) < 1/K -log (K + (|| Ind f(1)n]| + || Ind f(2)nl]) - [| Ind g, || - K)

+ lognorm(Ind 5‘5 +(11) @ Ind 6,? ﬁ))

<1/K -log, (LK) + lognorm(Ind @?ﬁ)) + lognorm(Ind 35+(21))
<1/K -log, (LK) + lognorm(ﬁfﬁ)) + lognorm(afﬁ)).
Here L i= 1+ (|f(Unll + 1/2)all) - lgn] is independent of K and D(0). and the
last step uses Lemma 6.5 (i). Part (iii) follows by sending K — oc. O

Proposition 12.2 generalises to fundamental groups of finite graphs of groups
(with infinite cyclic or trivial edge groups).
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12.2. Free groups. We compute medim and mevol for standard actions of free
groups.

Proposition 12.3. Let d € Nx, let Fy be a free group of rank d, and let o be a
standard action of Fy. Then:
(i) For alln € N, we have mevol,(a) = 0;
(ii) For alln € N\ {1}, we have medim? (o) = 0;
(iii) We have medim?(a) > d —1;
(iv) If « is the profinite completion with respect to a directed system (I';)icr of
finite index normal subgroups of Fy with (\;c; Ty =1, then

medim? (a) =d — 1.

Proof. Parts (i) and (ii) follow from Corollary 10.2 and Lemma 9.3. Alternatively,
one can apply Proposition 12.2 by viewing F,; as a free product of copies of Z.
(iii) By Theorem 8.6, we have

medim? () > b (Fy) = d — 1.
(iv) Let (I;);es be directed system with a: Fy ~ T',. A direct computation
shows that
b (Fy, T, Z) =d— 1.
Therefore, by the dynamical upper bound (Theorem 8.1) we have

d—1 :Zl(Fd,F*; Z) < medim? ().
Conversely, we obtain medim? (a) < d — 1 from Lemma 14.2. Indeed, since T; is a
free group of rank 1+ [Fy : I';](d — 1), Lemma 14.2 yields

1

Since [Fy : T';] = oo as i — oo, the claim follows. O

12.3. Surface groups. We compute medim and mevol for standard actions of
surface groups.

Proposition 12.4. Let X, be a closed orientable surface of genus g. Let o be a
standard action of m1(2,). Then:
(i) For all n € N, we have mevol, (o) = 0;
(ii) For all n € N\ {1}, we have medim? (o) = 0;
(iii) We have medim} (o) > 2g — 2;
(iv) If « is the profinite completion with respect to a directed system (I';)icr of
finite index normal subgroup of m(Xy) with (;c; s = 1, then

medim? (o) = 2g — 2.

Proof. Parts (i) and (ii) in degree 0 follow from Corollary 10.2 since m(X,) is
infinite. In positive degrees, the claims follow from Proposition 12.2 and Propo-
sition 12.3 by viewing m1(X,) as an iterated amalgamated product of free groups
over infinite cyclic subgroups.

(iii) By Theorem 8.6, we have

medim? () > b§2)(7r1(§]g)) =2g—2.

(iv) Let (I';);er be a directed system with cv: w1 (2,) T,. A direct computation
shows that
bl(wl(Zg),F*; Z) = 2g — 2.
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Therefore, by the dynamical upper bound (Theorem 8.1) we have
29 —2= /b\l(wl(Eg),F*; Z) < medim? ().

Conversely, we obtain medim1Z (a) < 2g — 2 from Lemma 14.2. Indeed, since I'; is
the fundamental group of a surface of genus 1+ [71(3,) : T';](g — 1), Lemma 14.2
yields

medim? (a) < +2g—2.

2
~ m(Bg) 1 T
Since [m1(XZy) : T'] — oo as ¢ — oo, the claim follows. d

13. PRODUCTS WITH AN AMENABLE FACTOR

We prove that product actions groups with an amenable factor have medim
and mevol equal to zero. Let Z be the integers (with the usual norm) or a finite
field (with the trivial norm).

Proposition 13.1. Letn € N. Let I'y be an infinite amenable group of type FP,, 41
and let Ty be a group of type FP 1. For i € {1,2}, let o;: Ty ~ (X, i) be a
standard action. We denote by oy X ag: Ty x Ty ~ (Xy X Xo, 1 ® pe) the product
action. Then
Vre{0,...n+1} medimf(al X ag) = 0;
Vre{0,....n} mevol, (a; X ag) = 0.

Proof. By Lemma 9.2, we may assume that Z = Z. For i € {1,2}, we denote
R; = L>=(o;)*I;. Since T'; is of type FP,, 11, there exists a free ZT';-resolution C(7).
of Z such that the ZI';-module C(%), is finitely generated for all » < n 4 1. Then
we have an ag-embedding C(2), — D(2), = Indgﬁ2 C(2), with dimpg,(D(2),) =
rkzr, (C(2),) < co. Since I'y is amenable, by Theorem 11.11 there exists K € R
such that for all € € Ry there exists an aj-embedding C(1), — D(1). such that

for all » € {0,...,n+ 1}, we have dimpg, (D(1),) < € and ||8P(1)|| < K. Consider
the ring extension

Rl ®z R2 = (LOO(Oll) * Fl) Kz (LOO(OZQ) * Fl) — LOO(Oél X 012) * (Fl X Fg) = R.
Then the composition
C(1). ®z C(2)x — D(1). ®z D(2)x — Indf o g, (D(1). ®z D(2).)

is an (a1 X ag)-embedding. Indeed, given measurable subsets A; C X; fori € {1,2},
we have

Indg1®zR2(<A1> X7, <A2>) = <A1 X A2>
Thus, for every r € {0,...,n + 1}, we have

dimp ((Indf o, g, D(1). ®2 D(2),),) = > dimp, (D(1),) - dimp, (D(2),)
ptag=r

<e- Y dimg,(D(2),).
q=0

We can choose ¢ arbitrarily small and conclude medim?(a; x ag) = 0.
The boundary map of the chain complex D(1), ® D(2), is given by

o: @ D), zD2)y— @ D)@z D(2),

ptq=r prg=r—1

0. = P (07" ®idp),) & (~1)P(idpa), @95 P).
ptq=r
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Then we have
lognorm(Indfi, %y Ry Or+1)

< > dimp(Indg g, 5, D(1), @z D(2),)
pt+q=r+1
log, (| TndF, o, 5, 07N @idpa). [| + | IndR, g, g, idpr). @07 3|))

< Y dimg,(D(1),) - dimp, (D(2 )q)-10g+(||05(”\|+||3f(2)||)

p+g=r+1
r+1
<e- ZdlmR2 ) - log (K + ||<9D(2)||)
Again, we can choose ¢ arbitrarily small and conclude mevol,.(a; X a3) = 0. O

14. FINITE INDEX SUBGROUPS

14.1. Induction and restriction. We prove proportionality results for medim
and mevol of standard actions of finite index subgroups.

Let A be a finite index subgroup of . If a: ' ~ (X, p1) is a standard I'-action,
then alp: A ~ (X, ) is a standard A-action. The ring inclusion L™ (afp) * A —

L>(a) * T induces a restriction functor Rebézgz‘):i A on module categories.

If B: A ~ (Y,v) is a standard A-action, then Indy 8: T ~ (I x, Y,Ind} v) is a
standard T-action. Note that we rescale Ind)\ v so that it is a probability measure.

Proposition 14.1. Letn € N, let " be a group of type FP,,+1, and let A C T be a
subgroup of finite index.

(i) If a: T'~ (X, u) is a standard T-action, then

medim? (o) < [[: A] - medim? (a)
mevol, (afp) < [T': A] - mevol, ().

(ii) If B: A~ (Y,v) is a standard A-action, then

medim? (Ind} 8) = - medim (3)

1
[T:A]

mevol, (Ind} 8) = T Al

-mevol, (8).

Proof. (i) Let C, — D, be an a-embedding. Then ResZk C, — Reszzgz‘):;&/\ D,

is a a|a-embedding with

dlmLoo(a“)*A (ReSLOO(Zf*f*AD ) § [F : A} . dimLoo(a)*r‘(Dn)

lognorm(ResinZ‘:)F*A 0F) < [I': A] -lognorm(92)

by Lemma 6.5 (ii).
(i) Since Ind} A is weakly bounded orbit equivalent to 4 (Definition 18.14), this
follows from Theorem 18.2. O

Lemma 14.2. Let n € N, let T be a residually finite group of type FP, 11, and
let Ty = (Ty)icr be a directed system of finite index normal subgroups of T with
MNic;Ti=1. Leta: T ~ (f*, 1) be the profinite completion of T with respect to T.
Fizi e I. Let Cy be a free ZT';-resolution of Z. Let D, be a free ZT';-chain complex
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augmented over Z and let f,: Cy — D, be a ZT';-chain map. Then we have

VTG{O"_.’nJ’,l} medlmTZ(a) . rkzpi (Dr)

1
- [F : I‘i]

Vreo,...np  mevol,(a) < # -1kzr, (Dyy1) - log, [|0F 4]
[T
Proof. The free ZT';-chain complex D, has chain modules of the form D, = € r, 2L
for some index set I, and differentials 2. We define an associated marked pro-
jective chain complex D, over R = L>®(a) * I as follows. Consider the map
i f* — T'/T; and set A == p;I(lpFi). The subset A of f* is I';-invariant and has
measure p(A) = 1/[" : T;]. We define the R-chain modules D, = D, (A)p and
differentials 8? given by the same matrix (with entries in ZT;) as OP. Then D, is
a marked projective R-chain complex augmented over L™ («) with

dimg(D,) = p(A) - #I, = -tkzr, (D,)

1
[F : Fz}

) = 1
lognorm(92 1) < dimp(D,41) - log, |02, <

-tkzr, (Dyyr) - log, [|024]).

The composition of ZI';-chain maps C, — D, — ﬁ* extends to a ZI'-chain map
ZT @zr, C — D,. Let C. be a free ZT'-resolution of Z. Then we obtain an
a-embedding as the composition

C’,’F — 7T Kzr, C, —— ]/j*

| l )

7z — Z[0)T;] —— L*®(«)

where the ZT-chain map C}, — ZT'®zr, C, is induced by the ZI'-map Z — Z[I'/T]
that sends 1 € Z to the (finite) sum of all Z-basis elements of Z[I'/T';]. O

Remark 14.3. We outline an alternative proof of Lemma 14.2 using results from
Part 3. However, it involves actions that are not essentially free to which our setup
could be extended.

In the situation of Lemma 14.2, we denote by «;: I' ~ T'/T'; the translation
action. Since «; is weakly contained in o (Example 15.3), by monotonicity of medim
and mevol (Theorem 15.30) we have

medim? (o) < medim? ()
mevol, («) < mevol,(a;).

We denote by 3;: I'; ~ pt the trivial action. Then «; = Indgi Bi and by Proposi-
tion 14.1 (ii) we have

1
medim? (o;) = Ty medim; (53;)
1
mevol,(a;) = roTy -mevol,(5;).
Under the ring isomorphism ZT'; 2 L*°(f3;) x I';, the ZT';-chain map f.: C, — D,

is a B;-embedding and hence
medim? (8;) < rkzr, (D)
mevol,.(3;) < lognorm(92. ) < rkzr, (Dy41) - log |02 ]].

Combining the above inequalities proves Lemma 14.2.
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14.2. The cheap rebuilding property. We prove that the profinite completion
action of groups satisfying (an equivariant version of) the algebraic cheap rebuilding
property has medim and mevol equal to zero. The algebraic cheap rebuilding prop-
erty was introduced by the authors [LLM™| modeled after the (geometric) cheap
rebuilding property of Abert—Bergeron—Fraczyk—Gaboriau [ABFG25|.

Definition 14.4 (JLLM™, Definition 4.18|). Let I be a group and let n € N. We
say that I" satisfies the algebraic cheap n-rebuilding property if there exist a free
ZI'-resolution C. of Z with C; finitely generated for all j < n and x € R>; such
that for all 7' € R>; and every residual chain A, in I' there exists 7o € N such
that for all ¢ > iy, the Z-chain complex of A;-coinvariants (Cy)a, is a Z-chain
homotopy retract of a free Z-chain complex C?, via Z-chain maps f.: (Cy)a, — C.
and g.: C. — (Cy)a, and Z-chain homotopy H.: g« o fs =~ id(c,),, satisfying the
following for all j < n:

K
7 tkz((C))as)
1SN 1£5 11 Nl s 1 | < exp(r) - T

The key facts about the algebraic cheap rebuilding property are that it im-
plies the vanishing of torsion homology growth [LLM™, Lemma 4.22|, admits a
bootstrapping theorem [LLM™, Proposition 4.23|, and is satisfied by the group of
integers Z [LLM™, Examples 4.21].

In order to establish a relationship to the vanishing of medim and mevol, we
define an equivariant version of the algebraic cheap rebuilding property. The dif-
ference is that in Defintion 14.5 we require the existence of a ZA;-chain homotopy
retraction of Res%ii C, while in Definition 14.4 we require only the existence of a
(non-equivariant) Z-chain homotopy retraction of the A;-coinvariants (Ciy)a, .

i

Definition 14.5. Let I' be a group and let n € N. We say that I' satisfies the
algebraic cheap equivariant n-rebuilding property (CERP,, for short) if there exists
a free ZI'-resolution C, of Z with C; finitely generated for all j < n and k € R>;
such that for all T € R>; and every residual chain A, in I' there exists ip € N
such that for all 7 > ig, the ZA;-chain complex Res%ii C; is a ZA;-chain homotopy
retract of a free ZA;-chain complex E, via ZA;-chain maps f,: Resg\i C, — E, and
g« By — Res%ii C, and a ZA;-chain homotopy H,: g. o f. ~ idRes%R ¢, satisfying
the following for all j < n: '

K
tkza, (Ej) < 7 - thaa, (Res7y, Cu)
18711 155115 Wlgs s I1H | < exp(x) - T

Clearly, the algebraic cheap equivariant rebuilding property implies the non-
equivariant one. We do not know if the converse holds.

Remark 14.6. The algebraic cheap equivariant rebuilding property is a bootstrap-
pable property of residually finite groups in the sense of [LLM™, Definition 3.4].
The proof is analogous to the non-equivariant case [LLM™, Proposition 4.23 (i)].
Hence this property admits a bootstrapping theorem [LLM™, Theorem 3.6|. Since
the group of integers Z satisfies CERP,, for all n € N, see [LLM™, Example 4.21],
repeated applications of the bootstrapping theorem show that many groups sat-
isfy CERP,, for suitable n. For example, infinite elementary amenable groups
of type FP, satisfy CERP,, for all n and the special linear group SL4(Z) satis-
fies CERP4_» for d > 3.

Theorem 14.7. Let n € N and let I' be a group satisfying CERP, 1. Let A, be
a residual chain in T and let o: T ~ (X, ) be the profinite completion of T' with
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respect to A,. Then
Vre{o,...,nt1} medimz(a) =0

Vreqo,...ny mevol,(a) = 0.

Proof. By Lemma 9.2, we may assume that Z = Z. We use the notation C,, k, T ig
from Defintion 14.5. For i > ip, we apply Lemma 14.2 to the ZA;-chain map
% Res%,r\i C,. — E., where the free ZA;-chain complex E, satisfies

ko, (By) < 7 - [0 A - ke (C)
1081] < exp(s) - T
Hence Lemma 14.2 yields
medim%(a) < % -1kyr(C))

K2 °
AT e (Gra)

Sending T' — oo finishes the proof. O

mevol,(a) <
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Part 3. Dynamical inheritance properties

We establish the following dynamical inheritance and computational properties
of measured embedding dimension and measured embedding volume: monotonicity
under weak containment (Section 15), a disintegration estimate and reduction to
ergodic actions (Section 16), estimates via the equivalence relation ring (Section 17),
invariance under weak bounded orbit equivalence (Section 18), comparison with cost
(Section 19), comparison with integral foliated simplicial volume (Section 20). In
particular, this will also allow us to compute further examples.

15. WEAK CONTAINMENT

In this section, we prove monotonicity of measured embedding dimension and
measured embedding volume under weak containment of actions (Theorem 15.30).
After recalling the definition of weak containment, we introduce an upper bound
on the norm and a way of translating chain complexes over a crossed product ring
to a different action.

15.1. Preliminaries on weak containment. We briefly recall the definition of
weak containment and a few examples.

Definition 15.1 (weak containment, [Kecl0, p. 64]). Let I" be a group and a: I" ~
(X, ) and B: T' ~ (Y, v) be probability measure preserving actions of I" on standard
probability spaces. We say that « is weakly contained in 8 (in symbols o < ) if
for all n € N, measurable sets Aq,..., A, C X, finite sets F' C T", and ¢ > 0, there
are measurable sets By, ..., B, C Y such that

Vyer Vije(t,..ny [H(Y*(A) NA;) —v(y?(Bi) N By)| <e.
Here we write v (resp. v%) when v € T is acting on (X, zz) via a (resp. on (Y,v)
via f3).

Weak containment is transitive on probability measure preserving actions of a
given group.

Example 15.2. Let I be a group and a: I' ~ (X,p) and 8: T ~ (Y,v) be
probability measure preserving actions of I' on standard probability spaces. It is
straightforward to check that a < a x 3, where a x 8: I' ~ (X x Y, p ® v) is the
product action.

Example 15.3. Let I' be a residually finite group and A, be a residual chain of T".
Let (X, u) be the inverse limit of the system (I'/A;);en, equipped with the Haar
measure. Then, we have an action I' ~ X via left translation. This action is weakly
contained in the profinite completion action I' ~ r [Kec12, Proposition 2.3].

For countably infinite groups, there is a smallest action with respect to weak
containment.

Example 15.4 (Bernoulli shift). Let (X,u) be a non-trivial probability space
(i.e., p is not concentrated in one point) and T be a countably infinite group. The
Bernoulli shift of T on X is the action of I on [[ X (endowed with the product
measure) via shifting of the factors. Abért and Weiss proved that the Bernoulli
shift is weakly contained in every free probability measure preserving action of I"
[AW13, Theorem 1].

Example 15.5 (amenable groups). Let T' be an infinite amenable group. Then
all free probability measure preserving actions of I' on standard probability spaces
are weakly contained in the Bernoulli shift [Kec10, p. 91]. As a consequence in this
situation all free probability measure preserving actions on standard probability
spaces are weakly equivalent (Example 15.4).
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Definition 15.6 (ergodic action). An action I' ~ (X, ) is ergodic if for every
measurable subset A C X with I'- A = A, we have

pw(A)=0 or p(X\A)=0.

Definition 15.7 (EMD*, [Kecl2, Definition 4.4, Proposition 4.5]). An infinite
countable residually finite group I' satisfies EMD* if every ergodic standard prob-
ability action of I' is weakly contained in the profinite completion action I' ~ T'.

For the examples below, note that Tucker-Drob proved that for all groups prop-
erty EMD* is equivalent to a similarly defined property MD [TD15, Theorem 1.4].

Example 15.8 (EMD*). The following groups satisfy EMD*:

e countable free groups [Kecl2, Theorem 3.1, Proposition 4.5[;

e residually finite infinite amenable groups [Kecl0, Proposition 13.2];

e free products of non-trivial groups I' * A, where each is either finite or has
property EMD* [TD15, Theorem 4.8]

e subgroups of groups with property EMD* [Kec12, p. 486];

e finite index extensions of groups with property EMD* [Kecl2, p. 486];

e extensions 1 - N — I' = @@ — 1 where N is a finitely generated group
with property EMD* and Q is a residually finite amenable group [BTD13,
Theorem 1.4].

The previous properties show that also the following geometric families of groups
have EMD*:

e fundamental groups of connected closed surfaces [BTD13, Theorem 1.4];

e fundamental groups of connected compact hyperbolic 3-manifolds with emp-
ty or toroidal boundary [FLMQ21, Proposition 5.2| (see also [FLPS16,
Corollary 3.11]).

More examples can be found in the survey by Burton and Kechris [BK20, pp. 2698f].

Many dynamical invariants are monotone under weak containment (including,
e.g., cost [Kecl0, Corollary 10.14] and integral foliated simplicial volume [FLPS16,
Theorem 1.5], see Sections 19 and 20 for the definitions). In Theorem 15.30, we will
prove monotonicity of measured embedding dimension and measured embedding
volume under weak containment. In particular, for groups satisfying EMD*, we
can bound medim and mevol of the profinite completion by the corresponding
invariant of any action (Corollary 16.5).

Instead of working directly with the definition, we will often employ the following
characterisation of weak containment using weak neighbourhoods.

Definition 15.9 (weak neighbourhoods, [Kec10, Section 1(B)]). Let I" be a group
and (X, pu) be a standard probability space. The weak topology on the space of
probability measure preserving actions I' ~ (X, u) is defined by the following basic
open neighbourhoods: Let a: ' ~ X, F C I be finite, n € N, A;,..., 4, C X be
measurable, and € € R~(. Then,

{51 ', X | Voyer vz’e{l,...,n} M((’YaAi) A (’YﬂAi)) < 5}

is open in the weak topology.

Proposition 15.10 ([Kecl0, Proposition 10.1]). Let a: T’ ~ (X, p) and B: T ~
(Y,v) be probability measure preserving actions. Then, « is weakly contained in S
if and only if in every weak neighbourhood U of «, there is B’ € U such that B’
is isomorphic to B as actions on standard probability spaces, i.e., there is an iso-
morphism ¢: (X,u) — (Y,v) of measure spaces such that o(y*x) = vP¢(x) for
allz € X and vy €T.
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15.2. An upper bound on the norm. In the following, we will often use the
following upper bound to the norm.

Let a: T' ~ (X, ) be a probability measure preserving action. Since multi-
ple actions will be involved, we stress the action in the notation (we write, e.g.,
L>®(X) %o ' :i= L>(a) * T, (A4),, dimg,, 1kq, lognorm, ). We restrict to the special
case that R = R, = L%°(X) %, T.

Definition 15.11. Let f: M — N be an R,-homomorphism between marked pro-

jective R,-modules. Let P be a reduced presentation of f as specified in Setup 2.34.
We define

Q(fﬂ P) = Z |al—1j7k’,y|
(i,4,k,V)EIXIX K XF

and
Q(f) = minQ(/, P),

where the minimum is taken over all possible reduced presentations of f. Note
that this is indeed a minimum, as norms of elements in Z lie in N. If z € R,
define Q(z) .= Q(f.), where f.: R, — R, is the map given by right multiplication
with z.

If n: (A)o = L°(a) is an R,-linear map, we define

Q(n) = Q((n(xa,1))),

where ¢: L (a) < R, is the canonical inclusion into the summand indexed by 1 €
I'. Finally, if n: M = @, ;(Ai)a — L>(a) is an R,-linear map, we define

Q) =Y _Qnl(a,.)-
iel
Remark 15.12. Proposition 2.35 shows that for every R-homomorphism f be-
tween marked projective R-modules, we have || f|| < Q(f). Straightforward calcu-
lations also show that @ is an upper bound to the co-norm || - ||, (Definition 2.25),
to N1, and to N, (Definition 2.27).
Lemma 15.13. We record a few basic properties of this quantity.

(i) Let f: M — N be an R,-homomorphism between marked projective R -
modules and M = M; ® My be a marked decomposition. Then,

Q(f) < Q(fam) + Q(fn)-

(ii) Let f: M — N and g: N — P be R,-homomorphisms between marked
projective R, -modules. Then,

Qgo f) <Q9)-Q(f).

(iii) Let fr1: M — Ny and fo: M — Ns be R,-homomorphisms between marked
projective Ry -modules. Then, (f1, f2): M — N1 ® Ny satisfies

Q((f1, f2)) < Q(f) + Q(f2).

Proof. This follows from straightforward computations. O

15.3. Translating actions. Let o and 8 be probability measure preserving actions
of a group I" on a standard probability space (X, ). In this section, we consider
modules and maps defined over R,, and we produce “corresponding” Rg-modules
and Rg-maps.

We define the translation of modules and homomorphisms as follows.
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Definition 15.14 (translation of modules). Let M = @, ;(4i)a be a marked
projective R,-module. We define the translation of M to 8 as the marked projective
Rg-module Mg via

Mg = (Ai)s.
el

Remark 15.15. Since the definition of dimension (Definition 2.13) does not depend
on the action, we have that dimg(Mp) = dim, (M).

We can also translate maps to the action 3.

Definition 15.16. Let f: R}’ — R} be a linear map between marked free R,-
modules. Recall from Setup 2.34 that f is given by right multiplication with a
matrix z over R, where

Zij = § : Qijk,y (X’Y"‘Ulc”Y)v
(k,y)EKXF

and (Ug)rex is a finite family of disjoint subsets of X, the set F C T is finite,
and a;jr~ € Z. We define the translation of f to B to be the Rg-linear map
fs: R — Rj defined by right multiplication with the matrix z5 = ((25)i,j)ier jes
that is defined by

(2)ij = > Gijkr (Xop057)-
(k,y)EKXF

It is straightforward to show that fs is well-defined and does not depend on the
chosen presentation of z in Setup 2.34.

More generally, let f: M = @,c;(Ai)a = N = @D;c;(Bj)a be a linear map
between marked projective R,-modules. We define its translation to 8 by

fs = TN, O(LNOfOTFM),BOLMﬁi Mg — Ng,

where tn: N — Rf" and ¢pr, 0 Mg — RZH denote the canonical marked inclusions

and TN - R?J — N and mp: Rﬁ” — M denote the canonical marked projections.

Remark 15.17. The action « is replaced by § in three places:

(1) In the generation of modules: We generated an Rg-module instead of one
over R,;

(2) In the multiplication of the matrix: We multiply over Rg;

(3) In the coefficients: We multiply with x.,s(;, , where v now acts via § on Uy,.
Previously, we considered the action via «.

Remark 15.18. From Definition 15.11, it follows that () is translation-invariant,
Le., Q(fs) < Q(f)-

For complexes obtained from ZT'-chain complexes by tensoring, there is an easy
description of the translation.

Lemma 15.19. Let C, — Z be an augmented free ZT'-chain complex. Then, there
is a canonical isomorphism of Rg-chain complexes

(Ra ®ZI‘ O*)B = RB ®ZF C*

If Cy = ZT' and the augmentation map n: ZU' — Z is given by sending all v € T
to 1 € Z, then we can define an augmentation map R, ®zr Co — L () and the
previous isomorphism can be extended by the identity on L™ (B) in degree —1.
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Proof. The tensor product and the translation are compatible with direct sums, so
we can work componentwise. Without loss of generality, we assume C; =zp ZI'.
Then, we have isomorphisms of Rg-modules

(Ra ®zr Cj) 5 = (Ra) 5 = ((X)a) ; = (X)5 = Rg ®zr Cj.

For the boundary maps, because all of the above isomorphisms are compatible with
direct sums, we can suppose that 9;41: ZI' = ZI is given by right multiplication
with Y a~ - y. Then, R, ®zr 041 is given by right multiplication with

Zaw : (XX/Y) = Zav : (X"/“X?IV)'
yer ~er

Thus, its translation (Ra Qzr 8j+1)

yel’

5 to B is given by

D ay - (Xy5x,7)-
~yel

Because ’yﬁX = v*X, this agrees with Rg ®zr 0j4+1. For the extension to de-
gree —1, we define n: Ry ®@zr Cop = Ry — L () as the L™ («)-linear extension
of n((A,y)) =~A for all A € L*®(«) and v € T. O

Compositions behave well under translation in the following sense:

Lemma 15.20 (composition estimate). Let f: M — N and g: N — P be linear
maps over R, and § € Rsg. Then, there exists a weak neighbourhood U of a such
that for all € U, we have
(90 f)s=s5980 f5-
Proof. By Lemma 3.7, Lemma 3.6 (vi), and the definition of the translation via
the free case, we can assume that M = N = P = R,. We fix presentations as
in Setup 2.34, i.e., f and g are given by multiplication with elements z¢,z, € R,
respectively. Since sums behave well with almost equality (Lemma 3.6 (vi)), we
can assume without loss of generality that
zf=a- (X"/O‘W7’7) and g = b- (X)\“Va )\)7

where a,b € Z, v, A € I"and W,V C X are measurable subsets. We define U to be
the weak neighbourhood of o defined by setting F = {\™1}, n =2, 4; =W, 4, =V,
and € = ¢ (in the notation used in Definition 15.9).

Then, g o f is given by right multiplication with

Zp - 2g = ab - (Xyawnyoray, YA)
= ab - (X(ya)e(A-Dewnv), TA)-

Thus, for all 8 € U, the translation (g o f)s is given by right multiplication with
(15.1) ab - (X(vA)B(A-1)awnv)s TA)-
Similarly, g o fs is given by right multiplication with
(15.2) ab - (X (v ((A-1)sWnV)s VA)-

Note that the expressions in Equation (15.1) and Equation (15.2) differ only by
an « resp. 3 in the exponent of A=, Thus, by Example 3.3, (go f)s and gg o f5
are almost equal with error at most

p((NAHWAV) A (N (AW NY))
=p(AHWnV)A (A HWNY)) <4,
where the last inequality is given by the choice of the weak neighbourhood U. O
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Corollary 15.21 (translation of chain complexes). Letn € N, § € Rs, and (D.,n)
be a marked projective Ry-chain complexr with an augmentation map n: Dy —
L>(«). Then, there exists a weak neighbourhood U of « such that for all g € U,
the translated sequence ((D.)g,ng) ts a marked projective §-almost n-chain complex
over Rg.

Proof. We apply Lemma 15.20 multiple times. Define U to be the intersection
of the neighbourhoods where the estimate holds for 9, o 9,41 for r € {0,...,n}.
Moreover, because 7 is an augmentation, there exists z € Dy with n(z) = 1. Thus,
in a suitable neighbourhood, we have ng(zg) =s 15 = 1, = 1. O

Corollary 15.22 (translation of chain maps). Let n € N, let 6 € R, and let
f«: C = Dy be an R, -chain map between marked projective chain complexes (C, C)
and (D.,n) extending the identity on L*°(«). Then, there exists a weak neighbour-
hood U of a such that for all § € U, the translations of the chain complezes (Cy)ga
and (D.)p are marked projective 6-almost n-chain complexes over Rg and moreover,
the map (fi)p: (Ci)g — (D4)p is a §-almost n-chain map.

Proof. We apply the above Corollary 15.21 to C, and D, and intersect the resulting
neighbourhoods. Moreover, we apply Lemma 15.20 with error term 6/2 to the
compositions 1 o fo, O o f., and f,_1 09¢ for r € {1,...,n + 1}. We intersect

all resulting neighbourhoods of o to obtain a new neighbourhood U of «a. For

all € U, we have
ng o (fo)s =s/2 (no fo)s = Cp-
Moreover, for r € {1,...,n + 1}, we have
(07) 0 (fr)p =572 (07 © fr)s
=(fr-10 arc)ﬁ
=5/2 (fr—1)p 0 (05
Thus by Lemma 3.6 (i), we obtain that (3°)s o (f.)s =5 (fr—1)s © (0)s. O

We show that the marked rank, lognorm (Definition 6.2), and the norm change
continuously in the action in the following sense:

Lemma 15.23 (translation and marked rank). Let f: M — N be an R,-homo-
morphism between marked projective Ry-modules and 6 € Rsq. Then, there exists
a weak neighbourhood U of a such that for all B € U, we have tkg(fp) < rko(f)+0.

Proof. By Lemma 6.6, we have (in the notation of Setup 2.34)

o)=Y U (@rano).

jed  Miky)EIXKXF,
@i, j k,~#0

Thus, for every action 3, we have
tkg(fs) —1ka(f) < Z M(((Vﬁl)aAi NUR) A (v HPA; N Uk))

(1,4,k,y)EIX I X K XF,
@ik, 70

< Y MOt AT AN D)
(i,3,k, ) EIXIX KX F
<9,
where the last inequality holds in a suitable weak neighbourhood U that is defined

as in Definition 15.9 with error term e := §/(#1 - #J - #K - #F) (or € := 1 if the
denominator is zero) and the (4;);cr as the test sets. O
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Lemma 15.24 (translation and norm). Let f: M — N be an R,-homomorphism
between marked projective Ro-modules and § € Rsg. Then, there exists a weak
neighbourhood U of o such that for all B € U, the following holds: There is an Rg-
homomorphism fé: Mg — Ng such that

fs=s0n f5 and |If5ll < |fIl and f5(Mp) C fa(Mp).

Proof. By an analogue of Lemma 3.7, we can assume that M = (4),. We will
thus drop 7 € I from the notation. Let P be a presentation representing f as in
Setup 2.34 such that Q(f, P) = Q(f). Fix the notation of Setup 2.34. Pick a weak
neighbourhood U of a where for all v € F, k € K, and 8 € U, we have

)

U AYPUL) € ——.
(Y Uk Ay k)_#K_#F
Let 8 € U. We define

A= U ¥ U A 42U,
(k)EKXF
and A" == A\ A”. We set M’ = (A')g and M" = (A" N A)s. Hence, we have
an isomorphism of Rg-modules Mg = M’ & M". By construction, we have that
dimp(M") < pu(A”) < 5. We define fj == fsorar omar, where 74 is the projection
onto the marked summand M’ and ¢4 : M’ — M is the canonical marked inclusion.
In particular,

fé|M' = fglmr  and félM// =0
and f5(Mpg) C fg(Mg). Moreover, note that for L C K x F, we have
A0 ) YUc () Uk
(k,y)EL (k,y)EL

Thus, by the explicit description of the operator norm (Proposition 2.35), we have

||fé|| = max{ Z | o~ } L Cc K x F with ,u(A/ N ﬂ fyﬁUk) > 0}

j€J,(ky)EL (k,y)eL
< max{ Z |aj .~ ‘ L C K x F with ,u( ﬂ ’yo‘Uk) > 0}
jed(ky)el (ky)el
= [I71-
It remains to estimate ||f3|p||: we have
1fslae |l < 11 51l
< Q(fs) (Remark 15.12)
< Q(f). (Remark 15.18) O

We use these two estimates to show that also lognorm is continuous in the action.

Lemma 15.25 (translation and lognorm). Let f: M — N be an R,-homomor-
phism between marked projective R,-modules and € € R~y. Then, there exists a
weak neighbourhood U of a such that for all § € U, we have

lognormg(fg) < lognorm,,(f) +¢.

Proof. We set § :=¢/(4-log, Q(f)) >0 (or § := 1 if log, Q(f) = 0). By definition
of lognorm,,, there exists a marked decomposition (M;);c; of M over R, with
(15.3)

Zlognorm;(f\Mi : M; — N) = lognormy, (f, (M;)icr) < lognorm,(f) + g
iel
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To simplify notation, we will assume that M = M, consists of a single summand
and estimate the change of lognorm! (f|ys,) under translation. (The general case
will then follow by dividing the allowed error by #1, which stays constant during
this proof.)

By Lemma 15.23, there exists a weak neighbourhood U; of «, such that for all
B € Uy, we have rkg(f3) < rko(f) + 9. Moreover, by Lemma 15.24, there exists a
weak neighbourhood Us of «, such that for all 3 € Us, there exists fé: Mg — Ng
with

fs=sq( f5 and |fall < IfIl and f3(Mp) C fa(Mp).

We define U := U; N Us. Then, for all g € U, we have

lognormg(f5)

< lognormg(fz) + 6 - log, Q(f) (Lemma 6.4 (iv))
< lognormp(fg) + 6 - log, Q(f) (Def. of lognorm)
= min{dimg Mg, rks(f5)} - log, [If5]l + & - log, Q(F)

= min{dim, M,rkg(f5)} -log, || 5]l + 0 - log, Q(f) (Remark 15.15)
< min{dimq M, ks (fs)} - log, [Ifsll + 0 -log, Q(f)  (f3(Mp) C fs(Mp))
< min{dim, M,k f 40} -log, || f5] + 6 - log, Q(f) (Belh)
< min{dimq M,1ko f + 6} -log, [|f]| +0 - log, Q(f) (a0 < 11£1D
< min{dimy M, 1k, f} -log, ||| + 26 - log, Q(f) (Remark 15.12)
< lognorm’, (f) + % (Def. of §)
< lognorm, (f) + €. (Equation (15.3)) O

15.4. Strictification and translation. We revisit the results for strictification of
chain complexes and chain maps from Section 4. We establish more abstract upper
bounds and investigate how these change under translation.

As before, the two main results of this section are the following:

e Every almost chain complex is “close” to a strict chain complex (Theo-
rem 15.28).
e Every almost chain map is “close” to a strict chain map (Theorem 15.29).

Let a: T' ~ (X, ) be an essentially free probability measure preserving action
on a standard probability space. We consider modules over the crossed product
ring R, = L®(X) #, T

We bound the complexity of the input data by the following notion:

Definition 15.26 (translation-invariant constant). Let (X, ) be a standard prob-
ability space, I' be a group and n € N. A translation-invariant constant is a family
of maps kK = (ks)ser., that, given § € Ry, a probability measure preserving
action a: I' ~ (X, p), and an (augmented) marked projective §-almost n-chain
complex (Dy,n) over R,, assigns a positive real number k5(D,,n) such that the
following holds:

Let 6 € Rsp, a: I' ~ X and (D.,n) be a marked projective §/2-almost n-chain
complex over R,. Then, there exists a neighbourhood U of « (see Definition 15.9)
such that for every 8 € U, we have that ((D.)g,ng) is a é-almost n-chain complex
and

né((D*)Banﬂ) < Hé/Q(D*an) + 1.
We often write k5(D.) instead of k5(Dx,n).

In a similar fashion, we can define translation-invariant constants of almost chain
maps between almost chain complexes.
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Definition 15.27 (translation-invariant constant of chain complexes). Let (X, p)
be a standard probability space, I' be a group and n € N. A translation-invariant
constant is a family of maps (ks)ser., that, given § € R, a probability measure
preserving action a: I' ~ (X, ), and a d-almost n-chain map f.: C. — D, be-
tween augmented marked projective d-almost n-chain complexes over R,,, assigns
a positive real number kg(fx) such that the following holds:

Let § € Rug, a: T' v X and f.: C — D, be a §/2-almost n-chain map between
marked projective 0/2-almost n-chain complexes over R,. Then, there exists a
neighbourhood U of « such that for every 5 € U, we have that (f.)s: (Cs)g —
(Dy)g is a é-almost n-chain map between d-almost n-chain complexes over Rg and

ks((f)p) < Kspa(fs) + 1.

Theorem 15.28. Let (X, u) be a standard probability space, T' be a group, and
n € N. Then, there exist monotone increasing functions K,p: Rsg — Rs¢ and a
translation-invariant constant k = (Ks)ser., such that for every probability measure
preserving action a: T' ~ (X, 1), § € Rso, and every marked projective 6-almost
n-chain complex (D, n) over Ry, there exists a marked projective (strict) Ry, -chain
complez (D,, 7)) (up to degree n+ 1) such that

A8 PO)N(D, D, n) < K(rs(Dy)) - 6.

Moreover, D, can be chosen such that the following hold:
(i) For each j € {0,...,n}, the module D; is a submodule of ﬁj and the
inclusion map Dy < D, is a (K(ks(Dy)) - §)-almost n-chain map.

~

(ii) We have r5(Dx) < p(ks(Dx)).
Before giving the proof, we recall from Definition 4.7 that
k(D) = max{|gll, |07 ]], . .. 1027411}
v, (D) = max{[nllso, Ny (07), .., Ny (941) }
V(D) = max{ [ 1l]oc, N1 (O7), -, N1(8741) }-

n

Moreover, if k € Rsq, then we say that %, (D,) < k if
max{rk(D1),...,1k(Dp+1), kn(Ds), v, (Dy)} < K
and there exists a z € Dy with
n(z)=s1, Ni(z) <k, Nao(z) <k, [z|oo<Hh.

Proof. We employ Theorem 4.8 to define K: For the fixed n € N and = € Ry, we
define K (x) to be one of the K € R, for which Theorem 15.28 holds (with =
x). Without loss of generality, we can assume that the function K is monotone
increasing. We define « as follows: Let a: I' ~ (X, ) be a probability measure
preserving action, § € Rsq, and (Dy,n) be a marked projective d-almost n-chain
complex over R,. We define

ks = inf Q(z),
where z ranges over all z € Dy with n(z) =s 1. We then define
k5 (Daym) = max{rf, Q(n), (A7), ..., Q(8741),tk(D1), ..., xk(Dypy1) } + 1.

Note that @ and rk are invariant under translation (see Remark 15.18). For the
(almost-)invariance of x', note that if z € Dy such that 1(z) =;5/2 1, then the
composition estimate (Lemma 15.20) shows that in a suitable neighbourhood U,
we have for all 5 € U that ng(z3) =5 1. Moreover, Q(z3) < Q(z). Thus, we can find
a neighbourhood as in the translation-invariance condition. Note that because x’ is
defined as an infimum, we add the “+41” in the definition of a translation-invariant
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constant to obtain an open neighbourhood. Thus, s defines a translation-invariant
constant.

We show that the functions K and « satisfy the desired conditions: Let a: I'
(X, 1), 6 € Ry, and (D4, n) be a marked projective d-almost n-chain complex. We
write kp = ks(Dy) and Kp = K(ks(Dy)). We have 5, (Dy) < kp, because Ni(-),
No(4), |+ oo, and || - || are bounded from above by Q(-) (see Remark 15.12). Thus,
Theorem 15.28 yields a marked projective R,-chain complex (B*,ﬁ) (up to de-
gree n + 1) with

d%2(D.,D,,n) < Kp - 6.
Moreover, Theorem 15.28 states that the inclusion map D, — D, is a (Kp - 0)-
almost m-chain map. For the second statement, we have to dive into the details
of the proof of Theorem 4.8 and proceed by induction over the degrees. The
proof of Lemma 4.10 yields that Hg(ﬁ*) < k5(D,). Furthermore, that proof shows
that 50 = Do ® (B),, for some B C X and thus,

rk(Dg) = rk(Dg) + 1.
Lemma 15.13 then shows that

QM) < QM) + Q(7l(s))
=QMn) +Q(1 —n(z)) (proof of Lemma 4.10)
<QM)+(1+QMm) - Q2)) (Lemma 15.13)
< po(ks(Ds))

for the function pg:  — 1+ x + 2.
For the inductive step, assume that D,_; and 8? have been constructed and

satisfy the theorem with the function p,_;. The proof of Lemma 4.10 constructs ﬁr
as D, @ E,, where tk(E,) < rk(D,), and dim,(E,) is bounded by a function
in ks(D.). Moreover, Lemma 15.13 yields that

Q(0,) < Q(d,) + 1k E, - Q(d,) - Q(Dr41)
< Q(

3) (1 +1kD; - Q(0r41))
= (Q(arJrl) + rkEr) ’ (1 +rk D, - Q(arJrl))
< (Q(Or41) +1kDy) - (1 + 1k Dy - Q(9r41)),

AN

which is bounded from above by a function in m(ﬁ*). Moreover, in degree n + 1,
we have

~ ~

Q(0n+1) = Q(9pn+1)
Q(an+1) + rk(En)
Q(On+1) +1K(Dy),

<
<
which is also bounded from above by 2 - mg(ﬁ*). Finally, by construction, we have
rk(D,) < 2-rk(D,). Altogether, we obtain that
r5(D.) < p(ss(D.)),

where p is defined to be the maximum of all the upper bounds encountered so far.
Note that we can assume p to be monotone increasing, otherwise we set

P (r) == max p(y). ]
y<z

We can also strictify chain maps between (strict) chain complexes.
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Theorem 15.29. Let (X, ) be a standard probability space, let T be a group, and
let n € N. Then, there exists a monotone increasing function K : Rsg — Rsg and a
translation-invariant constant k such that for all a: ' ~ X, § € Rsg, and for every
§-almost n-chain map f.: (Cy,C) — (D,,7) between marked projective (strict) Reo-
chain complexes, extending the identity on L*°(«), there exists a marked projective

strict Ro-chain complex D, with
dit "IN D., Don) < K (rs(f.)) -6
that admits a chain map f;: C. — D, extending the identity on L ().

Proof. Given a: T' ~ (X, ), 6 € R5g, and a d-almost n-chain map f: C\, — 13*,
we define

ks(fo) = max{Q((), QL) ..., Q0%:1), QM), QD). ..., Q02 ),
QUfo)s- -, Q) } + 1.

Because @ is translation-invariant (Remark 15.18), & is a translation-invariant con-
stant. We employ Theorem 15.28 to define the map K: Ry — R, which can be
assumed to be monotone.

Because the norm of f is bounded by @ (Remark 15.12), we have the fol-
lowing estimates max{k,(Cy),vn(Cy)} < rs(fx) and Iﬁ?n(ﬁ*) < ks(f«). More-
over, kn(fx) < Kks(fs). Thus, Theorem 4.15 yields a marked projective R,-chain

complex (D,,7n) with
dit "IN D., Dun) < K(rs(f.)) -6
that admits a chain map f;: C. — D, extending the identity on L*°(«) such that

det IV 1) < K(s(£)) -6
for all r € {0,...,n+1}. O

15.5. Proof of monotonicity. The main goal of this section is to prove the fol-
lowing monotonicity result for measured embedding dimension and volume under
weak containment of actions.

Theorem 15.30 (weak containment). Let n € N, let T be a group of type FP, 11,
and let a: T~ (X, ), B: T~ (Y,v) be free probability measure preserving actions
of ' on standard probability spaces. Let a < 3. Let Z denote the integers (equipped
with the standard norm) or a finite field (equipped with the trivial norm). Then, we
have

medim? (3) < medim? (a),
mevol, (f) < mevol, (a).

Remark 15.31. The proof of this theorem consists of several steps. We give a
roadmap to the proof outlining the main ideas:

(1) We fix an a-embedding from C% to an augmented R,-chain complex D,
with dimg(D,) “close” to medimZ () (resp. lognorm,, (02, ;) “close” to
mevol, (a)).

(2) Because « is weakly contained in 3, the action  is (isomorphic to) an action
B': T~ X “close” to « in the weak topology (see Proposition 15.10).

(3) We can translate D, from o to 5 (see Section 15.3) and obtain (D.)gs.
However, in general, (D,)g will no longer be a chain complex, but only an
almost chain complex over R and the a-embedding C¢ — D, translates

to an almost chain map cf - (D.)p over Rg:. The error depends on the
previous distances.
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(4) We can strictify (D.)s to obtain a (strict) Rg-chain complex D,. We
obtain an almost 3’-embedding to this complex.
(5) We can also strictify the almost 5’-embedding to obtain a strict Rg/-chain

map cP N D, to a (different) strict chain complex D,.

(6) If B’ is “close” enough to «, the strictified chain complex D, is “close” to D,,
thus dimg: (D,,) is “close” to dimg(D,,) (resp. lognormg(a,’zrl) is “close” to
lognorm,, (02 ,)).

(7) We can make the error arbitrarily small, thus proving the claim.

The main difficulty is making the notions of closeness precise and controlling the

distances. These distances depend on one another, thus some work needs to be
done to obtain global control on the errors.

The key approximation is contained in the following lemma.

Lemma 15.32. Letn € N, let T be a group of type FPp 11, and let a: T ~ (X, )
be a free probability measure preserving standard action. Let f.: C& — D, be an -
embedding and € > 0. Then, there exists a weak neighbourhood U of o such that
for all B € U, there exists a 3-embedding c? - D, satisfying

dimﬂ(f)n) < dim,(Dy) +¢ and lognormg (02.,) < lognorm, (92, ) +¢.

Proof. We fix a free ZI'-resolution C, — Z of the trivial ZTI'-module Z with finitely
generated ZT-modules in degrees < n 4+ 1. We can additionally assume that Cy =
Z1" and that the augmentation map n: ZI' — Z is given by mapping all v € T
to1 € Z. As in the definition of medim?Z and mevol,, (Definition 1.1), we set C% =
Ry ®zr Cy. Let fio: CF — D, be the given a-embedding, i.e., an R,-chain map
extending the identity on L*°(«). By Lemma 15.25, we can pick a neighbourhood U
such that for all 8 € U, we have

lognormy ((8;1)p) < lognorm,, (9;1) + %

We fix a translation-invariant constant x«, and monotone increasing maps K and p
as in Theorem 15.28. Moreover, we fix a translation-invariant constant and mono-
tone increasing constant as in Theorem 15.29. By taking the maximum, we can
also denote the latter by x resp. K. We restrict the neighbourhood U to a poten-
tially smaller neighbourhood that additionally satisfies the translation-invariance
condition in Definition 15.26 (for § := ¢/2). We define

Q<f7 n) = maX{Q(f0>7 s Q(fn)}

and
M= (K(max{ﬁ;g(f*),Z p(rs(D)Y) - Q(f,n) + 1).K(n5/2(D*) 1)
and choose é € R+ such that

M-56<e and M -log,(M-9)< and 0 <e.

N ™

By Corollary 15.22, we can restrict U to a neighbourhood of « such that for
all B € U the translated chain complex (D.)g is a d-almost n-chain complex
and (fi)g: (CY)p — (Ds)p is a é-almost n-chain map. By Lemma 15.19, we
have (C%)p =

Let 8 € U. We first strictify (D.)g. By Theorem 15.28, we obtain a strict
marked projective Rg-chain complex D, such that the inclusion i, : (D,) 8= D,
is a (K (ks((D+)g)) - 6)-almost n-chain map and

dis 2 PN(D, (D), m) < K (rs((D2)p)) - 6.
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By translation-invariance and because of our choice of U, we have

ks((Ds)p) < Ksja(Dy) + 1.

Because K is monotone increasing, we can directly use K (xs/2(Dx)+1) as an upper
bound in the following. Then, by Lemma 4.4 and Remark 15.12, we have that the
composition i, o (f.)z: C2 — (D, )p is a (Q(fs,n) - K(ks/2(Dx)+1) -+ 6)-almost
n-chain map. Note that Q(fs,n) < Q(f,n).

Now, we can strictify the chain map: By Theorem 15.29, there exists a strict
marked projective Rg-chain complex D, admitting a (strict) Rg-chain map ol -

D, extending the identity on L°°(«) with
dgl({m(i*o(f*)/a))(ﬁ*7ﬁ*7n) < K(/@;(i* ° (f*)ﬁ)) Q(f,n) - K(ks/2(Dy) +1) - 6.

Thus, c? =D, isa B-embedding. From the explicit descriptions of the transla-
tion-invariant constants (see the proofs of Theorem 15.28 and Theorem 15.29), we
obtain that

ks(ix 0 (fu)g) < max{rs(f.),2- ks(Dy)} < max{rs(f.),2 p(ks(D))}.

Because the Gromov-Hausdorfl distance satisfies the triangle inequality (Proposi-
tion 3.17), we obtain

Ay (D..(D.)g.m) < M -5
with
M = (K (max{rs(£.),2- p(rs(D))}) - QUFm) +1)-K (s2(D.) +1),

as defined at the beginning of this proof. For the dimension, we thus obtain that

dimg(D,,) < dimg((Dy)g) + M -6 (Proposition 6.4 (v))
=dimy(Dy) +M -6 (Remark 15.15)
< dim, (D) +e. (choice of 4)

For the lognorm, we have
lognorm (8n+1) < lognormﬁ((a 1)) + M -log (M -6) (Proposition 6.4 (v))
< lognormﬁ((a 1)) + 5 (choice of 0)

< lognorm, (92,,) +e. (choice of U) O

We can now prove the theorem that measured embedding dimension and volume
are monotone under weak embeddings.

Proof of Theorem 15.30. We show how to deduce the statement for mevol,. The
proof for medimf works similarly by replacing every occurrence of “lognorm, (9, +1)”
by “dim. (D,,)”.

Without loss of generality, we assume that mevol,(a) < co. Let € € Ryg. By
definition of mevol,, there is an a-embedding C¢ — D, with

lognorm,, (92, ;) < mevol,(a) + e.

Because a < f3, in every weak neighbourhood U of a, there is 8’ € U such that 3’ =
B (Proposition 15.10). Thus, Lemma 15.32 yields a weak neighbourhood U of «

and 8’ € U with 8’ = 8 such that there is a §’-embedding c? = D, with

lognormy, (8,1?“) < lognorm,, (ar?Jrl) +e.
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As 8/ = f3, this defines a 3-embedding c? - D,. Thus,
mevol, () < lognormg (85)“)
< lognorm, (02,,) + ¢
< mevol,(a) + 2 -¢.
Taking the limit € — 0 yields the claim. (]

16. THE DISINTEGRATION ESTIMATE

We show a basic disintegration estimate for measured embedding dimension and
measured embedding volume (Proposition 16.2). This is useful in the context of
orbit equivalence and property EMD*. As usual Z denotes Z or a finite field.

Definition 16.1 (disintegration). Let a: ' ~ (X, p) be a standard action. We
write Prob(a) for the set of all probability measures on the measurable space X
that are invariant under the measurable action underlying «. A disintegration of «
is a map m: X — Prob(a) with the following properties:

e For every measurable subset A C X, the evaluation map
X —[0,1]
x — my(A)

is measurable and p(A) = [ m,(A) du(z).
e For all z € X and all v € I', we have m., = m,.
e For all v € Prob(a), the preimage X, = m~'({v}) is measurable and
v(X,) € {0,1}.
Such a disintegration of « is an ergodic decomposition of o if m, is ergodic for
all x € X (with respect to the measurable action underlying «).

Ergodic decompositions always exist [Var63, Section 4]. If m is a disintegration
of a standard action a: I' ~ (X, ), then for p-almost every « € X, the underlying
action of I' on X is essentially free with respect to m, [LS24, Remark 3.7]. We
then also write («, m,) for the induced standard action I' ~ (X, my).

For convenience, we introduce the following dual of the abbreviation “almost
every”: Given a probability space (X, ) and a property P: X — Bool (where Bool
denotes the Booleans), we say that there u-exists an x € X with property P if there
exists a measurable subset A C X with the property that p©(A) > 0 and that P(x)
holds for every x € A.

Proposition 16.2. Let n € N, let T be a group of type FP, 11, let a: T ~ (X, )
be a standard T-action, and let m: X — Prob(«) be a disintegration of a. Then:

(i) For every e € Ry, there p-exists an x € X with
medim? (or, m,) < medim? (o) + ¢.

(ii) For every e € Ry, there p-exists an x € X with

mevol, (a, m;) < mevol, (a) + €.

To prepare the proof of Proposition 16.2, we introduce the following notation:
We write R .= L*°(X,u,Z) «T' and R(z) := L>®(X,m,, Z) * ' whenever z € X.
Implicitly, we only speak of those z € X for which the I'-action on X is essentially
free with respect to m,; this is satisfied for p-almost every z € X. From marked
projective R-modules M and R-linear maps f: M — N, we obtain associated
marked projective R(x)-modules M (z) and R(x)-linear maps f(z): M(z) — N(x)
for p-almost every x € X. We record basic observations on dimensions and operator
normes:
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Lemma 16.3. Let a: T' ~ (X, ) be a standard T'-action and let m: X — Prob(«)
be a disintegration of a. Let M, N be marked projective R-modules and let f: M —
N be an R-linear map. Then:

(i) We have dimg(M) = [, dimp)(M(x)) du(x). In particular, there p-
exists an v € X with
dimp ) (M(z)) < dimgp(M).

(ii) For p-almost every x € X, we have

1f @) r@) < I1f]|5-

(iii) For every e € Ry, there p-exists an © € X with

lognormp,) (f(z)) < lognormpg(f) +e.

Proof. (i) As the dimension is additive with respect to marked decompositions, it
suffices to consider the case that M = (A)r for some measurable subset A C X. In
this case, by definition, we have

dim(M) = dima((4) ) = u(4) = [ ma(4) di(a)

:/ dimp(e) ((4) rex)) du(z) :/ dimp(,) (M(2)) dp(z).
X X

(ii) This is a consequence of the explicit description of the operator norm (Propo-
sition 2.35) and the following observation: if U C X is a measurable subset such that
there p-exists an @ € X with m,(U) > 0, then this already implies that pu(U) > 0.

Indeed, taking into account that

{z € X |m,(U)>0}= | J{z € X |m.(U)>1/n},
neN

we see that there exists a § € Ry such that there p-exists an x € X with mea-
sure mg(U) > 0. Let A :== {z € X | my(U) > 6}. Then A is measurable and
#(A) > 0. By construction, we have

/mm ) dy(z /m ) dpu(x) > 8- u(A) > 0.

(iii) As lognorm is defined as an infimum over all marked decompositions and
the different branches of lognorm’, it suffices to consider the following situation:
Let M = @,c; M; &, ; M; be a marked decomposition of M, let N; be marked
direct summands of N with f (M) C Nj and let

Z—ZdlmR ) - log. || f]as

el JjeJ

) - log [ f[: | -

Similarly, for € X, we define £(z) over R(x). Using the second and the first part,
we obtain

J 1) duto) < [ (3 dimpy (21 1o, 1l

el
37 dimpge) (N5 (2) - log, I flar |R) au(x)
jeJ

= 3" dimg(M;) - log, /] ) log. |/ lasy 1

el jedJ
=/.
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In particular, there p-exists an 2 € X with £(z) < ¢; therefore,

lognormp, (f(z)) < £(z) < L.
Considering all marked situations as in the definition of ¢ (and thus of lognorm g (f))
proves the claim. O
Proof of Proposition 16.2. Let

C*#D*

| |

7 —— L®(X, 1, 2)

be an a-embedding (over R). Then, for p-almost every x € X, we obtain a corre-
sponding (o, my)-embedding (over R(x)) of the following form:

C, f4@> D, (z)

J !

7 —— L®(X,mq, Z)

By Lemma 16.3, there p-exists an x € X with dimp(,)(Dy(2)) < dimg(D,,). Anal-
ogously, for each ¢ € Ry, by Lemma 16.3, there p-exists an z € X that satis-
fies lognormR(z)(aﬂ?) < lognormp (9, ,) +¢.

Therefore, considering all c-embeddings, we obtain the claimed approximative
disintegration estimates. O

As straightforward consequences of the disintegration estimate (Proposition 16.2),
we obtain:

Corollary 16.4 (ergodic actions suffice). Letn € N, let T be a group of type FP, 11,
and let a be a standard T'-action. Moreover, let € € R~o. Then:

(i) There exists an ergodic standard T'-action 8 with

medim? (3) < medim?Z (o) + €.

(ii) There exists an ergodic standard T'-action [ with
mevol, (f) < mevol,(a) + €.

Proof. The standard I'-action o admits an ergodic decomposition [Var63]|. Applying
the disintegration estimate (Proposition 16.2) to such an ergodic decomposition
proves the claim. O

Corollary 16.5. Let n € N, let T be a residually finite group of type FP,, 11 that
satisfies EMD*, and let « be a standard T'-action. Then

medim? (I ~ I) < medim? («) and mevol, (T ~ I') < mevol, ().

Proof. We only give the proof for mevol; the proof for medim works in the same
way. We write v: ' T for the profinite completion action. Let ¢ € Ryg.
By Corollary 16.4, there exists an ergodic standard I'-action 8 with mevol, (3) <
mevol, (a) 4+ . Because T' satisfies EMD* and 3 is ergodic, we have 3 < . There-
fore, the weak containment estimate (Theorem 15.30) gives

mevol, () < mevol, (5) < mevol, (a) + €.

Taking € — 0 shows that mevol,(y) < mevol, («). O
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Corollary 16.6. Let n € N, let T be a group of type FP, 11, let a: T ~ (X, 1)
be a standard T-action, and let B: T~ (Y,v) be the trivial T-action on a standard
Borel probability space (Y,v). Then, the diagonal action a X §: T ~ (X XY, p®@v)
is a standard I'-action and

medim? (o x ) = medim?(a) and mevol,(a x 8) = mevol,(«).

Proof. We obtain “<” from the weak containment estimate (Theorem 15.30) and
the fact that @ < a x 8. More elementarily, one can also show this directly, by
taking the product with (Y,v) at every step.

For the estimate “>”, we use the disintegration

m: X xY — Prob(a x )
(2,9) = (A u(Ay))

of a x 3. Here, A, C X denotes the image of AN (X x {y}) under the canonical
bijection X x {y} — X. For pu ® v-almost every (z,y) € X x Y, the standard
action (arx 3, m(y,,)) is canonically isomorphic in the measured sense to a (through
the canonical projection X x Y — X).

By the disintegration estimate, for every € € R+, there u ® v-exists an (z,y) €
X xY with

mevol, (a) = mevol, (a X 8,m(g,,)) < mevol,(a x ) +¢.

Taking ¢ — 0 shows that mevol, (a) < mevol, (o x 8). The argument for medim?
can be carried out in the same way. (]

More generally, we expect that measured embedding dimension and measured
embedding volume of a disintegrated action is equal to the integral of the corre-
sponding measured embedding dimensions/volumes.

17. WORKING OVER THE EQUIVALENCE RELATION RING

Measured embeddings over the equivalence relation ring can be approximated
in a controlled way by measured embeddings over the crossed product ring (Corol-
lary 17.1). The compatibility of marked projective dimensions and logarithmic
norms with the Gromov—Hausdorfl distance (Proposition 3.14, Proposition 6.4)
shows that the measured embedding dimension and the measured embedding vol-
ume can alternatively be computed via measured embeddings over the equivalence
relation ring.

Corollary 17.1. Let Z denote Z (with the usual norm) or a finite field (with
the trivial norm). Let n € N, let T' be a group of type FP, 11, and let o be a
standard I'-action. Let C be a free ZT'-resolution of Z that is of finite rank up to
degree n + 1. Moreover, let R denote the orbit relation of «, let D, be a marked
projective ZR-complex, and let f,: Ci — D, be a ZT'-chain map extending the
canonical inclusion Z — L= (a, Z).

Then there exists a K € R~ such that: For every § € Ry, there exists a
marked projective L (cv, Z)«I'-chain complex D. and a ZT-chain map f; . C, = D,
extending the canonical inclusion Z — L*>(a, Z) with

dgH(Indfg(a,Z)*F ﬁ*’ D*7 n) < 1)
Yre(o,mr1y déu(mdZF(f), dZF (f,)) < 6.

Proof. This is the special case of Theorem 5.10, where the subalgebra is the ring ZR
and where the subalgebra S is the algebra of all measurable subsets. O
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Proposition 17.2 (small resolutions over the equivalence relation ring). Let Z de-
note Z (with the standard norm) or a finite field (with the trivial norm). Let R be a
measured standard equivalence relation on a standard Borel probability space (X, 1),
let n € N, and let D, be a marked projective ZR-resolution of L («, Z) (up to de-
gree n + 1). Then: If T is a countable group of type FP, 1 and if o is standard
probability action of T' on (X, u) that induces R, then

medim? (o) < dimzx (D,,)
mevol, (a) < lognorm(d2,,) if Z =Z.

Proof. Let C, be a free ZT'-resolution of Z of finite type (up to degree n + 1). By
Corollary 17.1 and Propositions 3.14/6.4, it suffices to find a ZT'-chain map C, —
D, extending the canonical inclusion Z < L*(«, Z).

Let C, = Ind4F(C,). Then C, is a marked projective ZR-complex (aug-
mented over L*(«,Z), up to degree n + 1). Because D, is a ZR-resolution
of L*(a, Z), by the fundamental lemma of homological algebra, there exists a
ZR-chain map f;: C. - D, extending idpe(q,z). Hence, the composition of jA’*
with the canonical chain map C, — 5* induced by the inclusion ZI' — ZR has
the desired properties. O

Unfortunately, it is not clear whether /how these considerations lead to a mean-
ingful version of measured embedding dimension/volume that is invariant under
orbit equivalence. For instance, it is not clear in how many cases ZR-resolutions
(satisfying the implicit finiteness conditions in marked projectivity) as in Proposi-
tion 17.2 actually exist. The case of weakly bounded orbit equivalence is accessible
and treated in Section 18.

18. WEAK BOUNDED ORBIT EQUIVALENCE

Because L?-Betti numbers are compatible with orbit equivalence [Gab02a], the
homology growth over QQ shares the same property for residually finite groups of
finite type (via the approximation theorem [Liic94]). It is an open problem to
determine how (vanishing of) homology gradients over finite fields or torsion ho-
mology growth behaves under orbit equivalence. As a step towards this problem,
we show that measured embedding dimension and measured embedding volume are
compatible with weak bounded orbit equivalences. In particular, these invariants
provide upper bounds for homology growth over finite finite fields and for torsion
homology growth that are compatible with weak bounded orbit equivalences.

Setup 18.1. In this section, let Z denote Z with the standard norm or a finite
field with the trivial norm.

Theorem 18.2 (weak bounded orbit equivalence and medim, mevol). Let n € N,
let T' and A be groups of type FP, 11, and let o and [ be standard actions of I' and
A, respectively, that are weakly bounded orbit equivalent of index c. Then, we have

medimZ (o) = ¢ - medim?Z (),
mevol, () = ¢ - mevol, (5).

The theorem will be derived from a corresponding statement on measured em-
beddings over truncated crossed product rings. At the moment, the case of general
orbit equivalence is out of reach, because the equivalence relation rings do not ex-
hibit the same level of exactness and finiteness properties as the crossed product
rings.

As a preparation for the proof, we discuss dimensions and norms over trun-
cated crossed product rings (Section 18.1) as well as truncated version of measured
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embeddings, measured embedding dimension, and measured embedding volume
(Section 18.2).

18.1. Truncated crossed product rings. Let R be a unital ring. If p € R
is idempotent, then pRp is a unital ring. The idempotent p is called full if the
multiplication homomorphism Rp ®,r, pR — R is surjective.

If p € R is a full idempotent, then R and pRp are Morita equivalent through the
functors pR ®r - and Rp ®pprp -. In particular, we can translate freely between
projective resolutions over R and projective resolutions over pRp.

For convenience, we prove the following well-known fact that we need repeatedly.

Lemma 18.3. If p is a full idempotent of R, then the multiplication homomor-
phism Rp ®prp PR — R is bijective.

Proof. By definition, the multiplication homomorphism m is surjective. Consider
a pre-image >, ;rip ® ps; of 1 € R. That is, >, ;r;ps; = 1. There is a homo-
morphism f: R — Rp ®,rp pR of left R-modules that maps 1 to ) ., 7p ® ps;.
We claim that f is the inverse of m. It is obvious that m o f = id. The other
composition f om = id follows from:

f(m(zp @ py)) = f(zpy)

=apy- Y Tip @ ps;
el

= ap(pyrip) @ psi

el
= ap®@ pyrips;

el
=ap@py(Y_ripsi)

el

= zp ® py. U

In the context of measured embeddings, we need more refined information: We
need to preserve marked projectivity (instead of projectivity) and control over the
dimensions and norms of maps.

Definition 18.4. Let a: T' ~ (X, ) be a standard action. A subset A C X is
a-cofinite if it is measurable and if there exists a finite set FF C I' with F- A = X
(up to p-measure zero).

Clearly, cofinite sets in this sense have non-zero measure.

Remark 18.5 (existence of small cofinite subsets). Let a: ' ~ (X, u) be a stan-
dard action of an infinite group I' and let £ € Ryg. Then, there exists an a-cofinite
subset A C X with u(A) < e: Indeed, there exists a measurable subset A’ C X
with T'- A’ = X and p(A4’) < £/2 [Lev95, Proposition 1]. We choose a large enough
finite subset ' C T' with (X \ F- A’) < ¢/2. Then A = AU (X \ F-A4") is
a-cofinite and p(A) < e.

Definition 18.6 (marked projectives, dimensions, lognorm over truncated crossed
product rings). Let a: I' ~ (X, u) be a standard action and let A C X be a-
cofinite. We write R := L>®(«a, Z) «I" and p == (x4, 1) € R.

e If B C A is a measurable subset, we write

(B)prp = pRp - xB.
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e A marked projective pRp-module is a triple (M, (B;):cr, ), consisting of a
pRp-module M, a finite family (B;);c; of measurable subsets of A, and a
pRp-isomorphism ¢: M — @, (Bi)prp-

e The dimension of a marked projective pRp-module (M, (B;)icr, ) is given
by

. 1(Bi)
dim, g (M) = € R>g.
e ZG; pd) — -
o If f: M — N is a pRp-linear map between marked projective pRp-modules,
then we define lognorm,,,(f) analogously to the non-truncated case.

As in the case of marked projective modules in the non-truncated case, we will
usually leave ¢ implicit.

Proposition 18.7 (truncation and marked projectivity). Let a: T' ~ (X, p) be a
standard action and let A C X be a-cofinite. We write R == L*(a, Z) *T' and
p = (xa,1) € R. Then:
(i) The idempotent p is full in R.
(ii) If M s a marked projective R-module, then pM inherits a decomposition
as a marked projective pRp-module with

dimyp,(pM) = ~dimp(M).

1
(A)
(iil) If f: M — N is an R-linear map between marked projective R-modules,

then (with respect to a marked decomposition as in the previous item)

lognorm,, . (pf) < % -lognormpg (f).

(A

(iv) If M is a marked projective pRp-module, then Rp®prp M inherits a canon-
ical decomposition as a marked projective R-module with

dimp(Rp ®prp M) = p(A) - dimy, g, (M).
(v) If f: M — N is a pRp-linear map between marked projective pRp-modules,
then (with respect to the marked decomposition as in the previous item)
lognorm g (id ®@prp f) < p(A) - lognorm,, g, (f)-
The marked projective structure on pM depends on certain choices, but these

will not be problematic in our situations.

Proof. Because A is a-cofinite there exists a finite set F' C I" with F'- A = X (up to
measure 0). Through inductive removal, we obtain a family (B ),cr of measurable
subsets of A with (up to measure 0)

X=|]~ B,
yEF
(1) With this decomposition, we can write the unit in R as
1= (xy5,1) =Y (L) (x5, - (Ly ™) =D (L) p- (xp,,1) - (1,77,
VEF VEF veF

which shows that the idempotent p is full in R.
(ii) We only need to consider the case that M has rank 1. Thus, let M = (B)pg.
Then (up to measure 0)

B=||~v-BynB=|]|v-(Byny"-B),
yEF ~YEF
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and we obtain
P{B)R Zpry @D - R-(1,7) - (XB,n9-1.5:1) - (1,771

yEF
=pRp @p “R-(1,7)- (XB,Yﬂ'y*LB, 1) ((1,771) is a unit in R)
yEF
=pRp @p “R-Xp,ny-1.B ((1,7) is a unit in R)
NEF
:@p'R'p'Xerl.B (B'yﬂ'y_l-BCA)
yeEF
- EB<B7 Nyt B)yrp-
YEF

This provides a marked projective decomposition of the pRp-module p(B) . More-
over, with respect to this marked projective decomposition, we have

dim, gy (p(B) r) = % ﬁ (B, Nyt B) = ﬁ : ;u(v - B, NB)
1 1

M'#(UF’Y'BWQB)M'M(B)-

(iii) This follows from the dimension estimate in the previous part and the defi-
nition of the logarithmic norms.

(iv) We only need to consider the case that M has rank 1. Thus, let M = (B)rp
with B C A measurable. Because p is an idempotent in R and (xp,1) € pRp, the
canonical R-homomorphism

Rp @prp (B)prp — (B)R

is an isomorphism. In particular, this gives a canonical marked projective structure
on Rp ®prp M and

dimp(Rp ®@prp M) = p(A) - dimy, g, (M).

(v) This follows from the dimension estimate in the previous part and the defi-
nition of the logarithmic norms. (]

18.2. Measured embeddings over truncated crossed product rings. Let R
be a unital ring, let P C R be a set of idempotents. A marked projective (R, P)-
module is an R-module M, together with a decomposition

M =g @ Rp;,
iel

where (p;)icr is a finite family in P.

Definition 18.8 (embedding). Let R be a unital ring and let P C R be a set of
idempotents. Let L be an R-module. An (R, P)-embedding (up to degree n) of L
is a triple ((C4, (), f«, (D«,n)), consisting of
e a free R-resolution (Cy,() of L,
e an (R, P)-marked projective augmented R-chain complex (D,,7) augment-
ing L,
e and an R-chain map f: C, — D, up to degree n+1 extending idy,: L — L.

C*L>D,k

%c ln

— L
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Remark 18.9. We call these constellations embeddings because they are similar
to embeddings in a derived sense: In Definition 18.8, if ((Cy, (), f«, (D«,n)) is an
(R, P)-embedding of the R-module L, then the fundamental lemma of homological
algebra provides us with an R-chain map g,: D, — C, extending idy, that satisfies
gs o [« =g id.

Remark 18.10 (change of domain resolution). In the situation of Definition 18.8,
if ((Cx, ), f«, (Ds«,m)) is an (R, P)-embedding of L and (C%, (') is a free R-resolution
of L, then there also exists an (R, P)-embedding ((Cy, ("), f1, (D«,n)) with the same
target complex D, (by the fundamental lemma of homological algebra). However,
the quantitative properties of the maps f, and f,. might be different; in the following
discussion, we will only take quantitative aspects of the target complex into account
and therefore the choice of the domain resolution of L will be immaterial. The same
argument applies if C', consists of (finitely generated) projective R-modules instead

of (finitely generated) free R-modules.

Definition 18.11 (measured embeddings, truncated case). Let a: T' ~ (X, p)
be a standard action, let R := L*(«, Z) x T, let A C X be a-cofinite, and let
p = (xa,1) € R. We write P4 := {(xB,1) | B C A measurable}.

e An (o, A, Z)-measured embedding (up to degree n) is a (pRp, P4)-embedding
up to degree n of pL>°(«, Z) in the sense of Definition 18.8.

e We write A, (a, A, Z) for the class of all augmented target complexes arising
in (o, A, Z)-measured embeddings up to degree n.

In the situation of Definition 18.11, it might be helpful to understand that the
pRp-module pL>°(«, Z) is canonically isomorphic to L (A, Z). The pRp-structure
on L>®(A, Z) is given by

p(f,1p- (xB,1) = XanyB - f
for all f € L*®(a, Z), v € T, and all measurable subsets B C A (Remark 2.9).

Definition 18.12 (medim and mevol, truncated case). Let a: T' ~ (X, ) be a
standard action, let R = L*(«a,Z) « T, let A C X be a-cofinite, and let p =
(xa,1) € R. Let n € N and let T" be of type FP,,;.1. We then set

medim,ZL(a, A) = D*eAiﬁi,A,Z) dimpprp(Dy)

mevol, (a, A) == lognormpRp((“)r?H) it Z=27.

inf
D.€A,(a,A,Z)
Remark 18.13 (starting from resolutions over the group ring). Let n € N, let T"
be of type FP,, and let (Cy, ) be a free ZI-resolution of the trivial ZI'-module Z.
Let a: I' ~ (X, p) be a standard action and let R := L>®(«, Z) *T'.

(1) Then (R®zrC.y,id ®z() is a free R-resolution of the R-module L*>°(«, Z) =
R®gzr Z (with the canonical action; Remark 2.9), because R is flat over ZT'
(Proposition 2.10).

(2) If A C X is a-cofinite and p = (xa,1) € R is the associated full idem-
potent, then (pR ®zr C.,id®zrZ) is a projective pRp-resolution of the
pRp-module pR ®zr Z =,r, pL>(, Z) (with the canonical action).

Therefore, we may start from resolutions over the group ring ZI' when computing
or estimating measured embedding dimensions/volumes (Remark 18.10).

In particular, for A = X, the notions of embeddings and measured embedding
dimension /volume coincide with the ones from Section 1.1.

A similar remark applies when I' is of type FP, 11.
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18.3. Weak bounded orbit equivalence. We recall the notion of weak bounded
orbit equivalence, which is a more restrictive type of stable orbit equivalence.

Definition 18.14 (weak bounded orbit equivalence). Standard actions a: T' ~
(X, p) and B: A ~ (Y,v) are weakly bounded orbit equivalent of index ¢ € Rsq if
there exists an a-cofinite set A C X, a [-cofinite set B C Y, and a measurable
isomorphism p: A — B with the following properties:

e We have

1 | 1 | d w(A)
cpupila = ——=-v|p and c= -
p(A) v(B) v(B)
e For every v € T, there is a finite set F(y) C A such that for p-almost
every x € ANy~ A, we have p(y- ) € F(7) - p(x).
e For every A € A, there is a finite set E()\) C T' such that for v-almost
every y € BN AL B, we have o~ 1(\-y) € E()\) - o~ (y).

Example 18.15 (uniform lattices). Let G be a locally compact second countable
Hausdorff topological group and let I'; A C G be uniform lattices in G. Then
the standard actions I' ~ G/A and A ~ G/I' (with respect to the normalised
Haar measure) are weakly boundedly orbit equivalent [Sau03, Example 2.31]. For
instance, fundamental groups of closed Riemannian manifolds are uniform lattices
in the isometry group of the Riemannian universal covering [Sau03, Example 2.31
and Theorem 2.36].

Example 18.16 (amenable groups). Let I" and A be infinite finitely generated
amenable groups. Then I' and A admit weakly boundedly orbit equivalent stan-
dard actions if and only if ' and A are quasi-isometric [Sau03, Lemma 2.25 and
Theorem 2.38].

On the other hand, Gaboriau describes examples of pairs of groups I' x F;, and
I' x F,,, for n # m that are non-amenable and quasi-isometric but not weakly orbit
equivalent [Gab02b, Section 2.3].

Example 18.17 (weak bounded orbit equivalence vs. weak orbit equivalence). Let
I" be a cocompact lattice in SL,, (R). Then I' and SL,,(Z) are measure equivalent,
hence weakly orbit equivalent [Sau03, Theorem 2.33|. However, I' and SL,,(Z) are
not quasi-isometric and therefore not weakly boundedly orbit equivalent [Sau03,
Lemma 2.25]. This can be deduced from the invariance of the cohomological di-
mension under quasi-isometry [Sau06, Corollary 1.2].

Remark 18.18 (invariants under weak (bounded) orbit equivalence). The follow-
ing group invariants are invariants — or invariants up to scaling by the index — under
weak bounded orbit equivalence:

e the Novikov—Shubin invariants among groups of type FP ., [Sau06];

e the L2-torsion among groups of type F and actions that satisfy the measure-
theoretic determinant conjecture [LSW10];

e the integral foliated simplicial volume among fundamental groups of closed
aspherical manifolds [LP16].

The L2-torsion and the integral foliated simplicial volume might be invariants
of weak orbit equivalence for all we know. The Novikov—Shubin invariants are
definitely not as the example of Z and Z? shows. Finally, L?-Betti numbers are
invariants up to scaling by the index of weak orbit equivalence by Gaboriau’s the-
orem [Gab02a].

18.4. Proof of Theorem 18.2. The proof of Theorem 18.2 consists of two com-
ponents:
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(1) We relate measured embeddings over the full crossed product ring to mea-
sured embeddings over truncated crossed product rings (Proposition 18.19).

(2) We use the given weak bounded orbit equivalence to compare measured
embeddings over the corresponding truncated crossed product rings of the
two standard actions (Proposition 18.20).

Proposition 18.19. Let a: T' ~ (X, u) be a standard action and let A C X be
a-cofinite. Let n € N and let T be of type FP, 1. Then:

medim? (o) = pu(A) - medim?Z (v, A)
mevol, (a) = p(A) - mevol, (o, A) if Z =7.
More precisely (where R := L>®(a, Z) " and p == (xa,1)):

(i) If (D4, n) € Ap(a, Z), then (pDy,pn) € Ay(a, A, Z).
(i) If (D«,n) € Ap(a, A, Z), then (Rp @prp D+, id @prpn) € An(a, 2).

Proof. In view of the definition of medim and mevol in terms of measured embed-
dings and the compatibility of pR® g - and Rp®pr;, - with dimensions and lognorm
(Proposition 18.7), it suffices to show the two claims on measured embeddings.

We abbreviate L := L>®(«a, Z).

(i) Let (D4,n) € An(a, Z). We choose a free R-resolution (Ci,() of L of fi-
nite type. Then there exists an R-chain map f.: C. — D, extending id; (Re-
mark 18.10).

Applying the functor pR ®pg -, we obtain a pRp-chain map pf.: pCy — pD,
extending id,z. The complexes pC, and pD. consist of marked projective pRp-
modules (Proposition 18.7). Moreover, pR ®pg - is exact, because pR is projective
(as p is idempotent); hence, (pCy,pC) is a projective pRp-resolution of pL and
(pDx,pn) augments to pL.

Therefore, pf. witnesses that there also exists an (a, A, Z)-measured embedding
with target (pD.,pn) (Remark 18.10); i.e., (pD.,pn) € Ay (o, A, Z).

(i) Conversely, let (Dy,n) € Ay (o, A, Z). Let (Cy, ¢) be a free R-resolution of L.
Because pR is projective over R (whence flat), the induced complex (pCy,p() is a
projective pRp-resolution of pL. Hence, there exists a pRp-chain map f,: pCy, — D,
extending id,r..

Applying the functor Rp®,rp - and the canonical natural isomorphism Rp®p,rp
pR®p - =id from Lemma 18.3, we thus obtain an R-chain map id ®prpfs: Cx =g
Rp ®prp PCyx = Rp @prp D, extending the identity on L =g Rp Qprp pL.

Moreover, Rp Qprp, D consists of marked projective pRp-modules (Proposi-
tion 18.7) and (Rp ®prp D+, 1d ®prpn) augments to L =Zr Rp Qprp pL (by right-
exactness of Rp ®pgrp - ).

Therefore, id ®,rp f+ Witnesses that there also exists an (o, Z)-measured embed-
ding with target (Rp®prpDx,id @prpn) (Remark 18.10); i.e., (Rp®prpDs, id @prpn)
lies in A, (a, Z). O

Proposition 18.20. Let n € N and let I', A be groups of type FP, 1. Suppose
that there exist standard actions a: T' ~ (X, p) and B: A ~ (Y,v) that admit a
weak bounded orbit equivalence p: A — B. Then:
medim? (o, A) = medim? (3, B)
mevol, (a, A) = mevol,(8,B) if Z =1Z.

More precisely: The maps ¢ and 1) = p~*

¢ (xp, 1) - (L2(8,2)  A) - (X, 1) > (xa,1) - (L7(a, 2) #T) - (xa, 1) 19"

of unital rings, which allow to pull back and push forward module structures, such
that:

induce mutually inverse 1somorphisms
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(i) If (Ds,n) € Ap(a, A, Z), then (¢* Dy, o*n) € A, (B, B, Z).
(11) If( *777) GA (673 Z)7 then (¢*D*7¢* ) n(a7A’Z)'

Proof. We abbreviate R := L>®(«, Z) ', p:= (xa,1) € R, S == L>(8,Z) * A, and
q = (xB,1). For A € A, let E(\) C T be a finite set for ¢ as in Definition 18.14.
Then

so*: qSq — pRp

q g Y p(gopla, ) D
YEE(X)

with A,y = {z € ANyt A|o(y-z) =\ ¢(x)} gives a well-defined, unital
ring homomorphism. The corresponding map ¥* for v witnesses that ¢* is an
isomorphism. To see this one passes to the (restricted) equivalence relation rings.
Let Ry a ={(y-z,z) |z € A,v-x € A,y € '} be the equivalence relation ring of
the orbit equivalence relation of o restricted to A x A. Similarly, we define Rg p.
Clearly, ¢ induces a measure preserving isomorphism R, 4 = Rg, g of equivalence

relations and thus a ring isomorphism ZRg g =N ZRa, 4, which restricts to ¢* in
the following way. Consider the following commutative square of ring homomor-
phisms.

qSq —"— pRp

[ [

ZRsp —— ZRan

The left vertical map maps ¢(g,A)g = (gg(X - ¢), ) to the function f: Rgp — Z
such that

) JaA-y)g(Ny)aly) N =X
TN yy) = {O otherwise.

The left vertical map is a ring homomorphism (cf. Subsection 2.1). The right
vertical map is defined similarly. We verify that the diagram commutes. The
element f is mapped under the lower horizontal map (induced by ¢) to f' € ZR4 4
with

Py = {q(A “@(@)g(A - pl@)alp(@) i p(y-x) = A p(a);

0 otherwise.

Hence f’ can be expressed as a sum of functions ﬂY ranging over v € E()) such
that f; is supported on A, x. The function f,’y is the image of the ~-summand in
the formula for ¢*(¢q- (g, A) - ¢). So the square commutes.

Pulling back the module structure along ¢* defines an exact functor (even an
equivalence) from the category of pRp-modules to the category of ¢Sg-modules. By
construction, ©*(A)pry Zagq (B)gsq; therefore, for all measurable subsets A C A,
we obtain

" <g>pRp =4Sq <<,0(11)>qu
and

dimpRp«g)pRp) = ZEi; = V(f(g)) = diquq(<‘P(g)>qu)-

Hence, this functor canonically turns marked projective pRp-modules into marked
projective ¢Sg-modules with the same dimensions; similarly, the logarithmic norm
of homomorphisms between marked projective modules is preserved. Furthermore,
we have p*pL>® (o, Z) =454 ¢L°(8, Z).

Analogous statements hold for ¢*.
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This shows the claims (i) and (ii). In view of the compatibility with the di-
mensions and the logarithmic norms, also the statements on measured embedding
dimension and measured embedding volume follow. (|

Proof of Theorem 18.2. Let a: I’ ~ (X, ) and 8: A ~ (Y, v) be the given actions
and let A C X and B C Y be cofinite sets for which there exists a weak bounded
orbit equivalence ¢: A — B. Furthermore, let n € N. We then obtain

mevol, (a) = p(A) - mevol, (a, A) (Proposition 18.19)
wu(A) - mevol, (8, B) (Proposition 18.20)

_ m4) - v(B) - mevol, (5, B)

= - mevol, () (Proposition 18.19).

By definition, the first quotient is the index of .
The proof for medimf works in the same way. O

18.5. Example: Hyperbolic 3-manifolds. Let M be a hyperbolic 3-manifold of
finite volume, let T" := 71 (M), and let T, be a residual chain in T'. Conjecturally,
it is expected that ¢, (I',T,) = vol(M)/6x holds [BV13], where vol(M) denotes the
hyperbolic volume of M. Lé [Lé18, Theorem 1.1] proved that indeed

~ vol(M)

tl(F7 F*) S 6-1

holds (even more generally in the context of homology torsion growth of orientable,
irreducible, compact 3-manifolds with empty or toroidal boundary).

In the following, we reproduce the existence of a volume-linear upper bound
for torsion homology growth of closed hyperbolic 3-manifolds via the dynamical
approach. We follow the strategy for the dynamical computation of stable integral
simplicial volume of 3-manifolds [LP16, FLMQ21].

Theorem 18.21. Let M and N be oriented closed connected hyperbolic 3-manifolds
and let T':== m (M), A :=m(N). Then

mevoly (I' ~ f) mevol; (A ~ A)

vol(M) B vol(N)
medim?(I' ~ T) _ medim? (A ~ A)
vol(M) vol(NV)

Proof. We denote the profinite completlon standard actions by ar: T’ 5% [ and
apx: A A respectively. Let ap: I' A denote the trivial action of I' on A which
is not essentially free.

We compare I and A through their actions on hyperbolic 3-space: Let fr: I' ~
G/A and B5: A ~ G/T be the canonical standard actions on G := Isom™ (H?) asso-
ciated with the hyperbolic 3-manifolds M and N. These actions are mixing [BMO00,
Theorem I11.2.1] and weakly bounded orbit equivalent with index vol(M)/vol(N)
(Example 18.15).

As the group T satisfies EMD* (Example 15.8) we obtain

mevoly (ar) < mevoly (@p X fAr) (Corollary 16.5)
for the diagonal action @ x Br of ' on A x G/A. The standard actions @y X fAr

and ap x Ba are weakly bounded orbit equivalent with index vol(M)/ vol(N). This
follows from that fact that the index of the measure coupling A x G that gives rise
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to this weak bounded orbit equivalence has index vol(M)/ vol(N) and from [Fur99,
Lemma 3.2]. Therefore, Theorem 18.2 shows that

mevol; (O&F) < mevol; (a/\ X BF)

< :77211((]\]\/‘;)) -mevoly (g X Ba) (Theorem 18.2)
vol(M)
< olV) -mevoly (ay). (Lemma 18.22)

Symmetrically, we obtain mevol; (o) < vol(N)/vol(M) - mevol; (ar). The argu-
ment for medimlz works in the same way. ]

Lemma 18.22. Let T be a countable group, let a: T ~ (X, u) be a standard action
and let B: T ~ (Y,v) be a probability measure preserving action (not necessarily
essentially free) on a standard Borel probability space. We write aw x f: T' v (X x
Y, u ® v) for the associated diagonal standard action. Let n € N and let T' be of
type FP,4+1. Then

medim? (o x 3) < medim?Z («)
mevol, (a X 8) < mevol, (a).
Proof. We have a < ax 8 and thus the estimates are a consequence of monotonicity

under weak containment (Theorem 15.30). Alternatively, one could also prove these
estimates by straightforward direct constructions of measured embeddings. O

Corollary 18.23. There exists a constant K € Rso with the following prop-
erty: For all oriented closed connected hyperbolic 3-manifolds M, the fundamental
group T' == 71 (M) satisfies

(1) < K -vol(M).

Proof. This is a direct consequence of Theorem 18.21 and the dynamical upper
bound for logarithmic torsion growth (Theorem 8.1). O

In order to obtain the constant vol /67, one would need a single calculation of the
measured embedding volume for some closed hyperbolic 3-manifold. Comparison
with the simplicial volume estimate gives constant 6-log 3/v3 (Example 20.4), which
is not optimal.

19. THE COST ESTIMATE

The measured embedding dimension in degree 1 is compatible with cost, a dy-
namical version of the rank of groups [Gab00, KM04|. Because of Lemma 9.2 we
state the result only over the integers.

Theorem 19.1. Let I' be an infinite group of type FPs and let o be a standard
action of I'. Then

medim? (o) < cost(a) — 1.
In combination with Theorem 8.6, we obtain the sandwich
b§2) (T') < medim?(ar) < cost(a) — 1.

Gaboriau asked whether the two outer terms are equal for infinite groups [Gab02a,
p. 129]; it is thus natural to raise the following question:

Question 19.2. Let I' be an infinite group of type FPsy and let a be a standard
action of I'. Do we always have medim? (a) = cost(a) — 1 ?
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The basic idea to prove the cost estimate (Theorem 19.1) is to construct the low
degrees of a resolution over L («, Z) *T' from graphings of the orbit relation of a.
The fundamental theorem of homological algebra then provides a-embeddings with
such a target. In order to achieve the additive correction term —1, we do this in
the slightly more general case of restricted actions (Proposition 19.3). The scaling
properties of cost and measured embedding dimension then give the claimed upper
bound from Theorem 19.1. In principle, this method works for all countable groups
(not only those of type FP3), but our setting is not optimised for that level of
generality.

Proposition 19.3. Let T" be an infinite group of type FPy, let a: '~ (X, ) be a
standard action of T, and let A C X be a-cofinite. Then

.7 1
< —_— .
medim] (o, A) < cost (RQ|A, (A) /4|A)

Here, Rola = (Ax A)N{(z,v-z) | x € X,y € T'} denotes the restriction of the
orbit relation of o to A.

Proof. We follow the proof of b(12)(I‘) < cost(a)) — 1 via resolutions [L6h20b, Chap-
ter 4.3.2]. Let R := L*°(«,Z) I and let p :== (x4, 1) € R. Building on the analogy
of graphings of equivalence relations as dynamical versions of generating sets of
groups, we construct the low degrees of resolutions of pL>°(a, Z) from graphings
of Rala: Let @ be a graphing of R, |4; without loss of generality we may assume
that @ is given by a family ® = (¢; == v; - —: A; — B;);es of translation maps,
where I is countable and where for each i € I, we have «; € I" and measurable
subsets A; C A with B; .= ; - A; C A.
We define

Dy =pR and P;:= @<Ai>PRP
iel
as well as
oF: Dy = pL>®(a, 7)
p-(f,v)—=p-f
8{32 Pl — DO
XA; "€ — (XA” ]-) : ((]—7 ]-) - (1771))
By construction, 9% is surjective and 9 o 8F = 0. However, in general, we may
not have that im 9{ reaches all of ker 9. Therefore, we introduce the following

correction term:
Let ¢ € Ry and let (gx)ren be an enumeration of T'. For k,n € N, we set

A(k:,n) = {x €A | Hil,...,inel 351,...,57,,6{—1,1} gk - T = (pf: ©---0 (pfll (LL')}

Each A(k,n) is a measurable subset of A. Because ® is a graphing of R,|4, we
obtain for all k& € N that (J,.yA(k,n) = A. Hence, for each k € N, there is
an ng € N such that

ng

Cr = A\ [ J A(k,n)

n=0

satisfies pu(Cy) < 1/281 . ¢. u(A). We then set

E, = @<Ck>p3p

keN
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and
oF . By — Dy
xcr ek = (xe, 1) - ((1,1) = (1, 98))-
Finally, we define
Dy =P, ®E and 0P =0 ®oF: D, - D,.

By construction 9 0 &P = 0. Moreover, the correction term ensures that ker 95 =
im 0P; indeed the inclusion ker 9§ C imdP can be shown by a straightforward
adaptation of the case A = X [Loh20b, Lemma 4.3.11] via an inductive argument.

The modules Dy and D are projective. We may extend the low-degree sequence

apP op
Dl 41> DO H()) pLoo(Oé,Z)

to a pRp-resolution D, of pL>°(«,Z) that consists of free pRp-modules in degrees
greater than or equal to 2. Let C, be a free R-resolution of L*°(«,Z) that is of
finite type (in degrees < 2). By the fundamental theorem of homological algebra,
there exists a pRp-chain map f,: pC, — D, extending the identity on pL>°(«,Z).
Because pC is finitely generated over pRp in degrees < 2, the images of f; and fs
touch only finitely many of the marked summands in D; and Ds, respectively.
Therefore, we can find an (o, A, Z)-embedding to a marked projective target com-
plex ﬁ* with

dimpRp(lA)l) < dimpg,(D1) = ze; ﬁ ~ula(Aq) + EN ﬁ 1| a(Cy)
_Z +Z 2k+1'€-u(A)
161 kGN

cost (<I> ! n ) +e
= y T A .
1(A)
Taking e — 0 and then taking the infimum over all graphings ® of R, |4 shows that
1
medim? («, A) < cost (RQ|A, —_ ,u|A),
' p(A)
as claimed. 0O

Proof of Theorem 19.1. Let € € Rsg. Because I' is infinite, there exists an a-
cofinite subset A C X with u(A) < ¢ (Remark 18.5). Combining the cost estimate
for Ro|a and the scaling properties of cost [KM04, Theorem 21.1] and medim?
(Proposition 18.19), we obtain

medim? (o) = p(A) - medim? (o, A) (Proposition 18.19)
1 "
wu(A) - cost (Ra|A, oA 'M|A> (Proposition 19.3)
= cost(Rala, pla)
= t(a) (X \ A) (scaling of cost)
= cost(a) — 1+ pu(A

< cost(a) —1+e
Taking € — 0 gives the claimed estimate. O

In the proof of Theorem 19.1, we do not obtain any control on 9% and thus no
upper estimate for mevol; in terms of cost. This is compatible with the expectation
that no such upper bound for mevol; (and whence for #;) should exist, as predicted
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by the conjectures on logarithmic torsion homology growth (in degree 1) of closed
hyperbolic 3-manifolds [BV13, Liic13, Lé18] and the computation of cost of their
fundamental groups [Agol4, Theorem 8.5].

Example 19.4. If T is a lattice in a higher rank semisimple real Lie group, or a
lattice in a product of at least two automorphism groups of trees, then I' has fixed
price 1 [FMW, Theorem D|. Hence, Theorem 19.1 shows that medim? (o) = 0 for
every standard action « of I'. Examples of such groups include, e.g., Burger—-Mozes
groups [FMW, Corollary 1.1].

20. THE SIMPLICIAL VOLUME ESTIMATE

The stable integral simplicial volume of closed manifolds gives upper bounds
on logarithmic torsion homology growth and Betti number growth [Saul6]. Dy-
namically, the stable integral simplicial volume can be expressed as integral fo-
liated simplicial volume of the profinite completion [LP16, L6h20b] and integral
foliated simplicial volume provides upper bounds on the L2-Betti numbers [Sch05]
and cost [L6h20a]. The following estimates of measured embedding dimension and
measured embedding volume complement these connections:

Theorem 20.1. Let M be an oriented closed connected aspherical n-manifold with
fundamental group T, let o be a standard T-action, and let k € {0,...,n}. Then

1
medimZ(a) < <ZL) VIR

1
mevolg (o) < log(k + 2) - (Zil) M.

Here, | M| is the a-parametrised (integral foliated) simplicial volume, i.e.,

| M| = inf{|c|s | c € L®(a, Z) @zr Cn(M;Z)

is an a-parametrised fundamental cycle of M }

We refer to the literature for further details on this definition [Sch05, LP16].

Remark 20.2. More generally, one can also define corresponding simplicial vol-
umes with finite field coefficients (with respect to the trivial norm on the coeffi-
cients) |[Loh20a, Section 4.6]. The arguments below work verbatim in that setting
and thus give estimates of the measured embedding dimension over finite fields in
terms of the corresponding parametrised simplicial volume with the same coeffi-
cients.

20.1. Proof of Theorem 20.1. For the proof of Theorem 20.1, we construct a-
embeddings to marked projective chain complexes defined out of a-parametrised
fundamental cycles. For the construction of such a-embeddings, the equivariant
chain-level version of Poincaré duality is essential.

Remark 20.3 (Poincaré duality). Let M be an oriented closed connected n-
manifold with fundamental group T, let Z be Z (with the usual norm) or a finite
field (with the trivial norm), and let « be a standard I'-action. Let L = Z (as trivial
ZT-module) or L = L*°(a, Z) and let R := LT (i.e., R=ZT or R = L*>°(«, Z)*T,
respectively). On R, we consider the involution ~ induced by the inversion map
onI'. Let ¢ = Z;":l a; ® o; be a cycle in L ®@zr C*(M; Z) with a; € L and
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oj € map(A™, M). Then the cap-product
- Ne: Homyr (Cou(M; Z), ZT) = R@zr C.(M; Z)

fHZaj an *)'*LUj

is a well-defined ZT'-chain map with the following additional properties [LM24,
Chapter 5.6][BS21, Section 3.3]:
o If [c] =[] in H,(L ®zr C’*(M; Z)), then - Ne~zr - NC.
e If L = Z and c represents a Z-fundamental cycle of M (under the canonical
chain isomorphism Z ® zr C, (]Tj, Z) 2, Cu(M; Z)), then - Ncis a ZT'-chain
homotopy equivalence.

Proof of Theorem 20.1. Let ¢ € Cp,(M; L () be an a-parametrised fundamental
cycle of M, say ¢ = Z;nzl a; @o; with a; € L>®(«) and 0; € map(A”, M), without
loss of generality, we may assume that the o; all belong to different I'-orbits so
that |c|y = ZT:l la;|i. By definition of the integral foliated simplicial volume and
medim/mevol, it suffices to construct an a-embedding to a complex D,, whose
“size” is controlled well enough in terms of |c|;. We abbreviate R := L>(a) *T".

Construction of the target complex. For j € {1,...,m}, we write A; := supp(a;).
Let k € N. Let Si(o;) denote the set of all k-faces of o;. We define the marked
projective R-module

Dk = @ <A]> - T
TeUjL, Sk(oy)

and, for k € N+, we set

5]?: Dk — Dk,1
XA, T Z(—l)r X4, - 0,7 for T € Si(oj).

Moreover, we define
n: Do — L>=(a)
XA; " T XA;-
Viewing the marked generators of D, as actual singular simplices on M produces

a canonical ZI'-chain map s,: D, — R ®zr Cy(M;Z), which extends ide(,) with

respect to 1 and the canonical augmentation R ®zr CO(M :Z) = L>™(«r). We will
see below that n: Dy — L™ («) indeed is surjective.
By construction, for each k € N, we have

n+1 n+1
Dy) < < .
dim(Dy) E <k+1) Aj) (k—l—l) lel1s
D D . n+1
lognorm (0, 1) <log, |0y - dim(Dy) < log(k 4+ 2) - re1) c]r.

Construction of the chain map. Let C, be a free ZI'-resolution of Z (that is of
finite rank up to degree n + 1). Because M is aspherical, there exists a ZI'-chain

map fi: Cx = Ci(M;Z) extending idz. Let E, = Homgzr(C)— *(M Z),Zr). By
equivariant Poincaré duality, there is a ZI'-chain homotopy inverse g, : C, (M;Z) —
E. of the map - Nz induced by an integral fundamental cycle ¢z € Z®zr C,,(M;Z)
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(Remark 20.3). Finally, the cap-product map
he = -Nc: B, — D,

fHZag (0)n—s) - «loj

is well-defined and a ZI'-chain map. Indeed, by Remark 20.3, this holds for the
target R ®zr C*(M; Z); by construction of D, this map factors over s..

We will now explain why h, o g, o fi: Cy — D, is an a-embedding, i.e., that
this composition extends the inclusion Z — L*°(«) as constant functions and that
n: Do — L*°(a) is surjective: We consider the following diagram of ZI'-chain maps:

C.(M;2) —% B, —0% D, —** Ry C.(M;7)
H | ——

C.(M; Z)

ZT @zr C,(M;Z)

9= E* - Neg,

The right hand square commutes up to ZI'-chain homotopy because ¢ and ¢z are
cycles in L () ®zr Ci(M;Z) that, by definition of a-parametrised fundamental
cycles, represent the same class in homology (Remark 20.3). The lower composition
is ZI'-chain homotopic to the identity (by choice of g.). Taking Hy of this diagram
thus results in the following commutative diagram of Z-modules:

Z —= Hy(M;z) 209 fo(p,)y —2C) By L% () —2 L%(a)
H Tcanonical map T
Z — Ho(M;Z) Ho(M;Z) ———— Z

In particular, we see that Hy(s,) is surjective (because Hy(sx) is L (a)-linear and
1 lies in the image). By construction of 7, this shows that also 7 is surjective and
that h, o g, extends the canonical inclusion Z — L*(«).

Hence, hy 0 g, o fi: C — D, is an a-embedding and we obtain

1
medimf (o) < dim(Dy) < <Zil> el

1
mevoly, () < lognorm(9y, ;) < log(k + 2) - (Z::: 1) “elr.
Taking the infimum over all a-parametrised fundamental cycles ¢ of M gives the
claimed estimates. O

20.2. Examples. We combine the simplicial volume estimate (Theorem 20.1) with
known computations of integral foliated simplicial volume. While the resulting
upper bounds for (torsion) homology growth are not new, they can now be combined
with other inheritance results for measured embedding dimension/volume to obtain
new results.

Example 20.4. Let I' be the fundamental group of an oriented closed connected
aspherical 3-manifold M. Then, we have

#1(T,T,) < mevoly (' ~ T,) (Theorem 1.2)
<6-log(3)- | M| ret. (Theorem 20.1)

h (M
=6-log(3) - M, [FLMQ21, Theorem 1.7]

U3
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where hypvol denotes the total volume of the hyperbolic pieces in the JSJ decom-
position of M.

In the case of hyperbolic 3-manifolds, this is a coarser version of the estimate
obtained in Theorem 18.21. It should be noted that the estimates for mevol; in the

proof of Theorem 18.21 and the computation of |M | I~ are based on the same,
dynamical, principles (weak bounded orbit equivalence and approximation).

Example 20.5. More generally, one obtains also upper bounds for the measured
embedding dimension and measured embedding volume in terms of the Riemannian
volume and a bound on the volume of small balls [BS21, Theorem 1.5]: Let V1 € Ry
and n € Nyg. Then, there exists a constant const(n, V1) € Rs¢ with the following
property: For every aspherical oriented closed cfovnnected Riemannian n-manifold
that satisfies vol3;(B) < Vi for all balls B C M of radius at most 1 and every
standard m (M)-space «, we have for all k € {0,...,n}:

1
mevolg (o) < log(k + 2) - (Zi 1) M (Theorem 20.1)
n+1

P - const(n, V1) - vol(M). [BS21, Theorem 1.5]

For medim% (a), an analogous version holds.

<10g(k+2)-(

Example 20.6. Let M be an oriented closed connected aspherical n-manifold
(with n > 0) with fundamental group I". Suppose that there exists an open cover
of M by amenable subsets of multiplicity at most n. Then, for all standard I'-
spaces « and all k£ € N, we have

medimy () =0 and mevolg(a) =0,

because |M|“ = 0 [LMS22|]. This type of vanishing arises in many geometric
situations, e.g., manifolds with amenable fundamental group, graph 3-manifolds,
smooth manifolds that admit smooth circle actions without fixed points and man-
ifolds admitting an F-structure [LMS22, Section 1.1][Sau09].

Acknowledgements. K.L., C.L., and M.U. were supported by the CRC 1085
“Higher Invariants” (Universitdt Regensburg, funded by the DFG). The material
on monotonicity under weak containment is part of M.U.’s PhD project.

M.M. was supported by the ERC “Definable Algebraic Topology” DAT — Grant
Agreement number 101077154.

M.M. was funded by the European Union — NextGenerationEU under the Na-
tional Recovery and Resilience Plan (PNRR) — Mission 4 Education and research
— Component 2 From research to business — Investment 1.1 Notice Prin 2022 —
DD N. 104 del 2/2/2022, from title “Geometry and topology of manifolds”, pro-
posal code 2022NMPLTS8 — CUP J53D23003820001.

R.S. was funded by the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) — project number 338540207.



[ABFG25]

[Ago14]

[AN12]

[AW13]
[BK20]

[BMOO]

[BS21]
[BTD13]

[BV13]

[CGS6]

[CIKT18]

[FLMQ21]

[FLPS16]

[FMW]
[Fur99]
[Gab0o]
[Gab02a]
[Gab02b]

[Kec10]

[Kec12]

[KKN17|

[KMO4]
[Le18]
[Levos)

[LLM™]

THE CHEAP EMBEDDING PRINCIPLE 103

REFERENCES

M. Abért, N. Bergeron, M. Fraczyk, and D. Gaboriau, On homology torsion growth,
J. Eur. Math. Soc. (JEMS) 27 (2025), no. 6, 2293-2357. Cited on page: 4, 6, 68

1. Agol, Virtual properties of 3-manifolds, Proceedings of the International Congress
of Mathematicians—Seoul 2014. Vol. 1, Kyung Moon Sa, Seoul, 2014, pp. 141-170.
Cited on page: 99

M. Abért and N. Nikolov, Rank gradient, cost of groups and the rank versus Heegaard
genus problem, J. Eur. Math. Soc. (JEMS) 14 (2012), no. 5, 1657-1677. Cited on
page: 1

M. Abért and B. Weiss, Bernoulli actions are weakly contained in any free action,
Ergodic Theory Dyn. Syst. 33 (2013), no. 2, 323-333. Cited on page: 70

P. J. Burton and A. S. Kechris, Weak containment of measure-preserving group ac-
tions, Ergodic Theory Dynam. Systems 40 (2020), no. 10, 2681-2733. Cited on page: 71
M. B. Bekka and M. Mayer, Ergodic theory and topological dynamics of group actions
on homogeneous spaces, London Mathematical Society Lecture Note Series, vol. 269,
Cambridge University Press, Cambridge, 2000. Cited on page: 95

S. Braun and R. Sauer, Volume and macroscopic scalar curvature, Geom. Funct. Anal.
31 (2021), no. 6, 1321-1376. Cited on page: 100, 102

L. Bowen and R. D. Tucker-Drob, On a co-induction question of Kechris, Israel J.
Math. 194 (2013), no. 1, 209-224. Cited on page: 71

N. Bergeron and A. Venkatesh, The asymptotic growth of torsion homology for arith-
metic groups, J. Inst. Math. Jussieu 12 (2013), no. 2, 391-447. Cited on page: 95,
99

J. Cheeger and M. Gromov, La-cohomology and group cohomology, Topology 25
(1986), no. 2, 189-215. Cited on page: 3

C. T. Conley, S. C. Jackson, D. Kerr, A. S. Marks, B. Seward, and R. D. Tucker-
Drob, Fglner tilings for actions of amenable groups, Math. Ann. 371 (2018), no. 1-2,
663-683. Cited on page: 60

D. Fauser, C. Loh, M. Moraschini, and J. P. Quintanilha, Stable integral simplicial
volume of 3-manifolds, J. Topol. 14 (2021), no. 2, 608-640. Cited on page: 1, 71, 95,
101

R. Frigerio, C. Loh, C. Pagliantini, and R. Sauer, Integral foliated simplicial volume
of aspherical manifolds, Israel J. Math. 216 (2016), no. 2, 707-751. Cited on page: 1,
71

M. Fraczyk, S. Mellick, and A. Wilkens, Poisson-voronoi tessellations and fized price
in higher rank, Preprint, arXiv:2307.01194, 2023. Cited on page: 6, 99

A. Furman, Orbit equivalence rigidity, Ann. of Math. (2) 150 (1999), no. 3, 1083-1108.
Cited on page: 96

D. Gaboriau, Codt des relations d’équivalence et des groupes, Invent. Math. 139
(2000), no. 1, 41-98. Cited on page: 1, 96

, Invariants £ de relations d’équivalence et de groupes, Publ. Math. Inst.
Hautes Etudes Sci. (2002), no. 95, 93-150. Cited on page: 1, 87, 92, 96

, On orbit equivalence of measure preserving actions, Rigidity in dynamics and
geometry (Cambridge, 2000), Springer, Berlin, 2002, pp. 167-186. Cited on page: 92
A. S. Kechris, Global aspects of ergodic group actions, Mathematical Surveys and
Monographs, vol. 160, American Mathematical Society, Providence, RI, 2010. Cited
on page: 70, 71

, Weak containment in the space of actions of a free group, Israel J. Math. 189
(2012), 461-507. Cited on page: 70, 71

A. Kar, P. Kropholler, and N. Nikolov, On growth of homology torsion in amenable
groups, Math. Proc. Cambridge Philos. Soc. 162 (2017), no. 2, 337-351. Cited on
page: 3

A. S. Kechris and B. D. Miller, Topics in orbit equivalence, Lecture Notes in Mathe-
matics, vol. 1852, Springer, 2004. Cited on page: 55, 96, 98

T. T. Q. L&, Growth of homology torsion in finite coverings and hyperbolic volume,
Ann. Inst. Fourier (Grenoble) 68 (2018), no. 2, 611-645. Cited on page: 95, 99

G. Levitt, On the cost of generating an equivalence relation, Ergodic Theory Dynam.
Systems 15 (1995), no. 6, 1173-1181. Cited on page: 54, 88

K. Li, C. Léh, M. Moraschini, R. Sauer, and M. Uschold, The algebraic cheap rebuilding
property, Preprint, arXiv:2409.05774, 2024. Cited on page: 4, 6, 68




104

[LLS11]

[LM24]

[LMS22]
[L5h20a]

[L5h20b]

[LP16]
[LS24]

[LSW10]

[Liic94]
[Liic13]
[OWS0]

[Sau03]

[Sau0s)|
[Sau06]
[Sau09]
[Saul6]

[SchO5]

[Sou99]
[Ste85]
[TD15]

[Var63]

K. LI, C. LOH, M. MORASCHINI, R. SAUER, AND M. USCHOLD

P. Linnell, W. Liick, and R. Sauer, The limit of Fp-Betti numbers of a tower of finite
covers with amenable fundamental groups, Proc. Amer. Math. Soc. 139 (2011), no. 2,
421-434. Cited on page: 3
W. Liick and T. Macko, Surgery theory. Foundations, Grundlehren der mathema-
tischen Wissenschaften |[Fundamental Principles of Mathematical Sciences|, vol. 362,
Springer, Cham, 2024. Cited on page: 100
C. Loh, M. Moraschini, and R. Sauer, Amenable covers and integral foliated simplicial
volume, New York J. Math. 28 (2022), 1112-1136. Cited on page: 6, 102
C. Loh, Cost vs. integral foliated simplicial volume, Groups Geom. Dyn. 14 (2020),
no. 3, 899-916. Cited on page: 99
, Ergodic theoretic methods in group homology—a minicourse on L?-Betti num-
bers in group theory, SpringerBriefs in Mathematics, Springer, Cham, 2020. Cited on
page: 1, 46, 97, 98, 99
C. Loh and C. Pagliantini, Integral foliated simplicial volume of hyperbolic 3-manifolds,
Groups Geom. Dyn. 10 (2016), no. 3, 825-865. Cited on page: 1, 92, 95, 99
C. Loh and G. Sartori, Integral foliated simplicial volume and ergodic decomposition,
Ann. Math. Blaise Pascal 31 (2024), no. 1, 47-64. Cited on page: 83
W. Liick, R. Sauer, and C. Wegner, L?-torsion, the measure-theoretic determinant
congecture, and uniform measure equivalence, J. Topol. Anal. 2 (2010), no. 2, 145—
171. Cited on page: 92
W. Liick, Approzimating L2-invariants by their finite-dimensional analogues, Geom.
Funct. Anal. 4 (1994), no. 4, 455-481. Cited on page: 87
, Approzimating L?-invariants and homology growth, Geom. Funct. Anal. 23
(2013), no. 2, 622-663. Cited on page: 99
D. S. Ornstein and B. Weiss, Ergodic theory of amenable group actions. 1. The Rohlin
lemma, Bull. Amer. Math. Soc. (N.S.) 2 (1980), no. 1, 161-164. Cited on page: 61
R. Sauer, L2-invariants of groups and discrete measured groupoids, Ph.D. thesis,
Westfalische Wilhelms-Universitdat Miinster, 2003, https://nbn-resolving.de/urn:
nbn:de:hbz:6-85659549583. Cited on page: 92

, L?-Betti numbers of discrete measured groupoids, Internat. J. Algebra Com-
put. 15 (2005), no. 5-6, 1169-1188. Cited on page: 52
, Homological invariants and quasi-isometry, Geom. Funct. Anal. 16 (2006),
no. 2, 476-515. Cited on page: 92
, Amenable covers, volume and L2-Betti numbers of aspherical manifolds,
J. Reine Angew. Math. 636 (2009), 47-92. Cited on page: 1, 102
, Volume and homology growth of aspherical manifolds, Geom. Topol. 20
(2016), no. 2, 1035-1059. Cited on page: 1, 49, 99
M. Schmidt, L2-Betti Numbers of R-Spaces and the Integral Foliated Simplicial
Volume, Ph.D. thesis, Westfilische Wilhelms-Universitdt Miinster, 2005, http://
nbn-resolving.de/urn:nbn:de:hbz:6-05699458563. Cited on page: 99
C. Soulé, Perfect forms and the Vandiver conjecture, J. Reine Angew. Math. 517
(1999), 209-221. Cited on page: 49
J. Steprans, A characterization of free abelian groups, Proc. Amer. Math. Soc. 93
(1985), no. 2, 347-349. Cited on page: 12
R. D. Tucker-Drob, Weak equivalence and non-classifiability of measure preserving
actions, Ergodic Theory Dynam. Systems 35 (2015), no. 1, 293-336. Cited on page: 71
V. S. Varadarajan, Groups of automorphisms of Borel spaces, Trans. Amer. Math.
Soc. 109 (1963), 191-220. Cited on page: 83, 85

FAKULTAT FOR MATHEMATIK, UNIVERSITAT REGENSBURG, 93040 REGENSBURG, GERMANY
Email address: kevin.li@ur.de

FAKULTAT FOUR MATHEMATIK, UNIVERSITAT REGENSBURG, 93040 REGENSBURG, GERMANY
Email address: clara.loeh@ur.de

DIPARTIMENTO DI MATEMATICA, UNIVERSITA DI BoLogNa, 40126 BorLoaNa, ITaLy
Email address: marco.moraschini2@unibo.it

FAKULTAT FUR MATHEMATIK, KARLSRUHER INSTITUT FUR TECHNOLOGIE, 76131 KARLSRUHE,

GERMANY

Email address: roman.sauer@kit.edu

FAKULTAT FOR MATHEMATIK, UNIVERSITAT REGENSBURG, 93040 REGENSBURG, GERMANY
Email address: matthias.uschold@ur.de


https://nbn-resolving.de/urn:nbn:de:hbz:6-85659549583
https://nbn-resolving.de/urn:nbn:de:hbz:6-85659549583
http://nbn-resolving.de/urn:nbn:de:hbz:6-05699458563
http://nbn-resolving.de/urn:nbn:de:hbz:6-05699458563

	1. Introduction
	1.1. Setup and dynamical sizes
	1.2. Upper bounds for gradient invariants
	1.3. Examples
	1.4. Dynamical inheritance properties
	1.5. Open problems and further motivation

	Part 1. Dynamical upper bounds for homology growth
	2. Basic notions
	2.1. Rings
	2.2. Base changes
	2.3. Modules
	2.4. Chain complexes
	2.5. Norms
	2.6. Support and size estimates
	2.7. An explicit description of the operator norm

	3. Almost equality
	3.1. Almost equality
	3.2. Controlled almost equality
	3.3. A Gromov–Hausdorff distance for homomorphisms
	3.4. A Gromov–Hausdorff distance for chain complexes

	4. Strictification
	4.1. Almost chain complexes and almost chain maps
	4.2. Strictification of almost chain complexes
	4.3. Strictification of almost chain maps

	5. Deformation
	5.1. Adapted objects/morphisms
	5.2. Adapting module homomorphisms
	5.3. Adapting almost chain maps
	5.4. Adapting chain complexes (almost)
	5.5. Deformation of chain complexes
	5.6. Deformation of chain maps

	6. A logarithmic norm for morphisms
	6.1. Construction
	6.2. Basic properties
	6.3. Explicit description of the marked rank
	6.4. The logarithmic norm of adapted homomorphisms

	7. Passing to finite index subgroups
	7.1. Discretisation
	7.2. Dimensions and norms
	7.3. From adapted embeddings to homology retracts
	7.4. Logarithmic torsion estimates

	8. Proof of the dynamical upper bounds
	8.1. Homology gradients
	8.2. L2-Betti numbers


	Part 2. Examples
	9. Basic properties
	10. Degree 0
	11. Amenable groups have cheap embeddings
	11.1. The integers
	11.2. Amenable groups

	12. Amalgamated products
	12.1. Amalgamated products
	12.2. Free groups
	12.3. Surface groups

	13. Products with an amenable factor
	14. Finite index subgroups
	14.1. Induction and restriction
	14.2. The cheap rebuilding property


	Part 3. Dynamical inheritance properties
	15. Weak containment
	15.1. Preliminaries on weak containment
	15.2. An upper bound on the norm
	15.3. Translating actions
	15.4. Strictification and translation
	15.5. Proof of monotonicity

	16. The disintegration estimate
	17. Working over the equivalence relation ring
	18. Weak bounded orbit equivalence
	18.1. Truncated crossed product rings
	18.2. Measured embeddings over truncated crossed product rings
	18.3. Weak bounded orbit equivalence
	18.4. Proof of Theorem 18.2
	18.5. Example: Hyperbolic 3-manifolds

	19. The cost estimate
	20. The simplicial volume estimate
	20.1. Proof of Theorem 20.1
	20.2. Examples

	References


