
TOPOLOGICAL VOLUMES OF FIBRATIONS:

A NOTE ON OPEN COVERS
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Abstract. We establish a straightforward estimate for the number of
open sets with fundamental group constraints needed to cover the total
space of fibrations. This leads to vanishing results for simplicial volume
and minimal volume entropy, e.g., for certain mapping tori.

1. Introduction

The Lusternik-Schnirelmann category catLS(X) of a topological space X
is the minimal number of open and in X contractible sets necessary to
cover X. Despite the first applications of Lusternik-Schnirelmann category
were more focused on the study of critical points [36, 14], it is now widely
applied also to the study of algorithms’ complexity [40, 44] and topological
robotics [19].

Relaxing the contractibility condition leads to generalised categorical in-
variants catG with fundamental group constraints (Section 2): Let G be a
class of groups. A G -set in a space X is a subset whose path-connected
components all have π1-image in G . The G -category of X is the minimal
number catG (X) of open G -sets needed to cover X. Geometrically relevant
classes G are the class Am of amenable groups or classes of groups with
controlled growth (for instance, Subexp<δ).

The main observation of the present note is the following straightforward
adaption of an estimate for the Lusternik-Schnirelmann category [43, 25, 29]
to the case of fundamental group constraints:

Theorem 1.1 (G -category of fibrations). Let p : E → B be a fibration with
a path-connected base space. Let x0 ∈ B be a non-degenerate basepoint of B
and let F := p−1(x0) denote the fibre. Moreover, let G be a class of groups
that is closed under isomorphisms, subgroups, and quotients. Then:

catG (E) ≤ catG (F ) · catLS(B)

We prove this statement in Theorem 3.1 in terms of categorical invariants
of maps. It should be noted that the rough estimate provided by Theo-
rem 1.1, in general, cannot be improved to catG (E) ≤ catG (F ) · catG (B)
(Example 4.15).
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Applications to topological volumes. Simplicial volume and minimal
volume entropy are examples of “topological volumes”, i.e., of R-valued in-
variants of manifolds that mitigate between topological properties and Rie-
mannian volume (Section 4.1, Section 6.1). Both simplicial volume and min-
imal volume entropy admit vanishing theorems in terms of π1-constrained
open covers of small multiplicity. Therefore, Theorem 1.1 gives correspond-
ing vanishing results for fibrations and fibre bundles. For example:

For simplicial volume, we can combine Theorem 1.1 with Gromov’s van-
ishing theorem for bounded cohomology and amenable covers [24] (Theo-
rem 4.6):

Corollary 1.2 (Corollary 4.9). Let M be an oriented closed connected man-
ifold that is the total space of a fibre bundle M → B with oriented closed
connected fibre N and base B. If

catAm(N) ≤ dim(M)

dim(B) + 1
,

then ‖M‖ = 0.

The fibre collapsing assumption of Babenko and Sabourau can be trans-
lated into generalised Lusternik-Schnirelmann category invariants (Section 5).
Therefore, combining Theorem 1.1 with the vanishing result of Babenko and
Sabourau [4, Theorem 1.3] (Theorem 6.4), we obtain:

Corollary 1.3 (Corollary 6.8). Let M be an oriented closed connected
smooth manifold that is the total space of a fibre bundle M → B with ori-
ented closed connected smooth fibre N and base B. If

catSubexp<1/ dim(M)
(N) ≤ dim(M)

dim(B) + 1
,

then minent(M) = 0.

In particular, Corollary 1.2 and Corollary 1.3 lead to vanishing results for
certain mapping tori. In the case of simplicial volume, this complements
vanishing results of Bucher and Neofytidis [10] (Remark 4.12).

Moreover, we use generalised Lusternik-Schnirelmann category invariants
to generalise a result by Bregman and Clay [8, Proposition 4.1] on the fibre
collapsing assumptions and graphs of groups (Remark 5.11) and provide an
aspherical version of examples of Babenko and Sabourau [4, Theorem 1.6]
of simplicial complexes with large minimal volume entropy and small “sim-
plicial volume” (Proposition 6.11, Corollary 6.12).

Organisation of this article. We recall the generalised Lusternik-Schni-
relmann category in Section 2. The proof of Theorem 1.1 is given in Sec-
tion 3; applications to simplicial volume are contained in Section 4. In
Section 5, we recall the fibre (non-)collapsing assumption by Babenko and
Sabourau; finally, the applications to minimal volume entropy are located
in Section 6.

Acknowledgements. We would like to thank George Raptis, Pietro Capo-
villa, and Kevin Li for carefully reading a previous version.
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2. Generalised LS-category

We recall the definition of the Lusternik-Schnirelmann category (of spaces
and maps) and the generalisation to fundamental group constraints [20, 29,
15, 18, 22, 12].

2.1. LS-Category of spaces and maps.

Definition 2.1 (LS-category). LetX be a topological space. The Lusternik-
Schnirelmann category (or simply LS-category) of X, denoted by catLS(X),
is the minimal number n ∈ N = {0, 1, . . . } such that X can be covered with
open sets U1, . . . , Un that are contractible in X. If such an n does not exist,
we set catLS(X) := +∞.

Similarly, we have the definition of LS-category of a continuous map:

Definition 2.2 (LS-category of a map). Let f : X → Y be a continuous
map between topological spaces. The LS-category of f , denoted by catLS(f),
is the minimal number n ∈ N such that X can be covered with open
sets U1, . . . , Un such that the restriction f |Ui is null-homotopic for each i ∈
{1, . . . , n}. If such a number n does not exist, we set catLS(f) := +∞.

2.2. G -Category of spaces and maps.

Definition 2.3 (G -sets (for a map)). Let G be a class of groups. Let X be
a topological space and let U be a subset of X. We say that U is a G -set if
for all x ∈ U , we have

im
(
π1(U ↪→ X,x)

)
∈ G .

An open cover U of X is called a G -cover if each open subset in U is a G -set.
Similarly, given a continuous map f : X → Y between topological spaces,

we say that an open set U ⊂ X is a G -set for f if for every x ∈ U , we have

π1(f)
(
π1(U, x)

)
∈ G .

An open cover U of X is called a G -cover for f if each open subset in U is
a G -set for f .

Definition 2.4 (G -category (of a map)). Let G be a class of groups. Let
X be a topological space. The G -category of X, denoted by catG (X), is the
minimal number n ∈ N such that X admits an open G -cover of cardinality n.
If such an n does not exist, we set catG (X) := +∞.

Similarly, the G -category of a continuous map f : X → Y between topo-
logical spaces, denoted by catG (f), is the minimal number n ∈ N such that
X admits an open G -cover for f of cardinality n. If such an n does not
exist, we set catG (f) := +∞.

Remark 2.5. Let G be a class of groups. If H is a class of groups with H ⊂
G , then catG ≤ catH . In particular: If G contains all trivial groups and
X is a finite-dimensional simplicial complex, then catG (X) ≤ dim(X) + 1,
as can be seen by the open stars cover of the barycentric subdivision of X
(grouped and indexed by the simplices of X).

Remark 2.6. We say that topological spaces X and Y are π1-equivalent, if
there exists continuous maps (called π1-equivalences) X → Y and Y → X
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inducing isomorphisms on the level of fundamental groups (these maps are
not required to be π1-inverse to each other).

Similarly, maps f, g : X → Y are said to be π1-homotopic if they induce
the same homomorphism on the level of fundamental groups.

Let G be a class of groups that is closed under isomorphism and let
X,Y be π1-equivalent spaces. Then, catG (X) = catG (Y ). Similarly, if
f, g : X → Y are π1-homotopic maps, then catG (f) = catG (g).

We collect some basic properties of the G -category of a map, which are
known to hold in the case of LS-category [15, Exercise 1.16].

Lemma 2.7 (properties of G -category). Let G be a class of groups that is
closed under isomorphisms, subgroups, and quotients. Let f : X → Y and
g : Y → Z be continuous maps between topological spaces. Then, we have
the following:

(1) catG (f) ≤ min{catG (X), catG (Y )};
(2) catG (g ◦ f) ≤ min{catG (g), catG (f)};
(3) If f is a homotopy equivalence, then catG (f) = catG (X) = catG (Y ).

Proof. Ad. 1. Let U be an open G -cover of X. Then, for each U ∈ U and
every x ∈ U , we have the following commutative diagram

π1(U, x)

��

π1(f |U )
// π1

(
Y, f(x)

)

π1(X,x)
π1(f)

// π1

(
Y, f(x)

)
,

where the left vertical arrow is induced by the inclusion. Because U is a
G -set in X and G is closed under quotients, the previous diagram shows
that U is a G -set for f . Therefore, U is an open G -cover for f . Taking the
infimum over all open G -covers of X shows that catG (f) ≤ catG (X).

On the other hand, if V is an open G -cover of Y , then (f−1(V ))V ∈V is an
open G -cover for f . Hence, we get catG (f) ≤ catG (Y ).

Ad. 2. As G is closed under taking quotients, it is immediate to check
that catG (g ◦ f) ≤ catG (f).

Moreover, if U is an open G -cover for g of Y , we can consider the pullback
f−1U , which is an open G -cover for g ◦ f . Therefore, catG (g ◦ f) ≤ catG (g).

Ad. 3. Because X and Y are homotopy equivalent, we have catG (X) =
catG (Y ) (Remark 2.6). Let f : X → Y be a homotopy equivalence and let
g : Y → X be a homotopy inverse. Then, g ◦ f is homotopic to idX . Then
Remark 2.6 and the first two parts show that

catG (X) = catG (idX) = catG (g ◦ f)

≤ min{catG (f), catG (g)} ≤ max{catG (f), catG (g)} ≤ catG (X).

This shows that catG (Y ) = catG (X) = catG (f). �

3. Generalised LS-category and fibrations

In this section, we prove Theorem 1.1. Indeed, Lemma 2.7 shows that
Theorem 1.1 is a consequence of the following statement:
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Theorem 3.1 (G -category of fibrations). Let p : E → B be a fibration with
a path-connected base space. Let x0 ∈ B be a non-degenerate basepoint
of B, let F := p−1(x0), and let ι : F ↪→ E denote the inclusion of the fibre.
Moreover, let G be a class of groups that is closed under isomorphisms and
subgroups. Then:

catG (E) ≤ catG (ι) · catLS(p)

Recall that a basepoint x0 of a space B is non-degenerate if the inclu-
sion {x0} → B is a cofibration.

Proof. Let n := catG (ι) and b := catLS(p); without loss of generality, we may
assume that they are both finite. Let (Vi)i∈[n] and (Wj)j∈[b] be corresponding
open covers of F and E, respectively; here, for k ∈ N, we abbreviate [k] :=
{1, . . . , k}. We construct an open G -cover (Uij)i∈[n],j∈[b] of E as follows:

Let j ∈ [b]. As Wj is an LS-set for p (i.e., p|Wj : Wj → B is null-
homotopic) and as the basepoint x0 ∈ B is non-degenerate, there exists a ho-
motopy hj : Wj×[0, 1]→ B with hj( · , 0) = p|Wj and hj( · , 1) = constx0 . By

the homotopy lifting property, there exists a homotopy h̃j : Wj × [0, 1]→ E

with p ◦ h̃j = hj . In particular,

h̃j( · , 1)(Wj) ⊂ p−1(x0) = F.

We write gj := h̃j( · , 1) : Wj → F .
For all i ∈ [n] and all j ∈ [b], we set

Uij := g−1
j (Vi) ⊂ E.

By construction, Uij is open in E and
⋃

(i,j)∈[n]×[b] Uij = E.

It remains to show that each Uij is a G -set. Let U ⊂ Uij be a path-
component of Uij , let iU : U ↪→ E be the inclusion and let y0 ∈ U .

We consider the map

k := h̃j |U×[0,1] : U × [0, 1]→ E.

Then k( · , 0) = iU . Moreover, let y1 := k(y0, 1) and let α : [0, 1] → E, t 7→
k(y0, t). Then, we obtain the corresponding change of basepoints isomor-
phism

α∗ : π1(E, y0)→ π1(E, y1)

[γ] 7→ [α−1 ∗ γ ∗ α].

By construction,

α∗ ◦ π1(iU ) = π1

(
k( · , 1)

)
: π1(U, y0)→ π1(U, y1).

Because α∗ is an isomorphism and G is closed under isomorphisms, it suffices
to show that Λ := π1(k( · , 1))(π1(U, y0)) lies in G . The commutative
diagram

U
k( · ,1)

//

incl
��

E

Uij
gj |Uij

// F

ι

OO
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shows that Λ is a subgroup of π1(ι)(π1(Vi, gj(y0)). The latter group is in G
as Vi is a G -set for ι. Because G is closed under subgroups, we obtain Λ ∈ G .

Therefore, (Uij)i∈[n],j∈[b] is an open G -cover of E and so catG E ≤ n·b. �

Remark 3.2. Let p : E → B be a fibration with fibre F over the base-
point x0 ∈ B and let i : F ↪→ E be the inclusion. Let G be a class of
groups that is closed under isomorphisms, subgroups, quotients, and under
extensions by Abelian kernels; e.g., G = Am. Then catG (i) = catG (F ): By
Lemma 2.7, we already know that catG (i) ≤ catG (F ). On the other hand,
the long exact sequence for p and the closure properties of G show that
catG (F ) ≤ catG (i).

Corollary 3.3 (G -category of mapping tori). Let G be a class of groups that
is closed under isomorphisms and subgroups. Let M be a closed connected
manifold that admits a fibre bundle p : M → S1 with manifold fibre i : N ↪→
M . If 2 · catG (i) ≤ dimN + 1, then

catG (M) ≤ dimM.

Proof. Because catLS(S1) = 2, we have catLS(p) ≤ 2. Applying Theorem 3.1
and the hypothesis on the G -category of i, we obtain

catG (M) ≤ catLS(p) · catG (i) ≤ 2 · catG (i) ≤ dim(N) + 1 = dim(M). �

4. Applications to simplicial volume

We recall the definition of simplicial volume and bounded cohomology
(Section 4.1) and Gromov’s vanishing theorem (Section 4.2). In Section 4.3,
we derive the vanishing results for simplicial volume and fibrations.

4.1. Bounded cohomology and simplicial volume. We briefly recall
the definition of bounded cohomology for spaces and of simplicial volume.
The systematic use of these invariants in geometry was initiated by Gro-
mov [24]. Simplicial volume measures manifolds in terms of singular chains.

Given a topological space X, we denote the real singular chain complex
by (C•(X;R), ∂•) and the real singular cochain complex by (C•(X;R), δ•).
These complexes are endowed with norms: For a singular n-chain c =∑k

i=1 αi · σi ∈ Cn(X;R) in reduced form, we define the `1-norm by:

|c|1 :=
k∑
i=1

|αi|.

Similarly, we endow C•(X;R) with the `∞-norm given by

|ϕ|∞ := sup
{
|ϕ(σ)|

∣∣ σ is a singular n-simplex in X
}
∈ R≥0 ∪ {∞}

for all ϕ ∈ Cn(X;R). As the coboundary operator δ• maps cochains of finite
norm to cochains of finite norm, we obtain the subcomplex (C•b (X;R), δ•)
of singular cochains ϕ with |ϕ|∞ <∞.

Definition 4.1 (simplicial volume). Let M be an oriented closed connected
n-dimensional manifold. We define the simplicial volume of M to be

‖M‖ := inf
{
|c|1

∣∣ c ∈ Cn(M ;R) is a cycle representing [M ]
}
,

where [M ] ∈ Hn(M ;R) denotes the fundamental class of M .
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Remark 4.2. More generally, the `1-norm on the singular chain complex in-
duces a semi-norm ‖ · ‖1 on the whole singular homology with R-coefficients.

A useful tool for detecting positivity/vanishing of simplicial volume is
bounded cohomology:

Definition 4.3 (bounded cohomology). Bounded cohomology of spaces is
the functor H•b ( · ;R) := H•(C•b ( · ;R)).

The connection between bounded cohomology and simplicial volume is
expressed in terms of the comparison map comp• : H•b ( · ;R) → H•( · ;R),
induced by the inclusion C•b ( · ;R) ↪→ C•( · ;R).

Proposition 4.4 (duality principle). Let M be an oriented closed connected
n-manifold. Then:

‖M‖ > 0⇐⇒ compnM is surjective

Remark 4.5. By now, many examples of manifolds with non-zero simplicial
volume are known. We list some of them:

• oriented closed connected hyperbolic manifolds [42, 24]; in particu-
lar, surfaces of genus ≥ 2;
• more generally: oriented closed connected, rationally essential mani-

folds of dimension ≥ 2 with non-elementary hyperbolic fundamental
group [24, mapping theorem][37];
• oriented closed connected locally symmetric spaces of non-compact

type [11, 32];
• manifolds with sufficiently negative curvature [26, 13];
• The class of manifolds with positive simplicial volume is closed with

respect to connected sums and products [24].

4.2. Gromov’s vanishing theorem. A classical application of the dual-
ity principle (Proposition 4.4) is to show that the simplicial volume of all
oriented closed connected manifolds with amenable fundamental group (and
non-zero dimension) is zero. This is a consequence of the vanishing of the
bounded cohomology for spaces with amenable fundamental group [24, 28,
21]. More generally, one has [24, 28, 21, 33, 27]:

Theorem 4.6 (Gromov’s vanishing theorem). Let X be a topological space.
Then:

(1) the map compsX : Hs
b (X)→ Hs(X) is zero for all s ≥ catAm(X);

(2) we have ‖α‖1 = 0 for all α ∈ Hs(X;R) with s ≥ catAm(X).

Remark 4.7. Usually, the vanishing theorem is stated in terms of mul-
tiplicity of the cover instead of cardinality. For CW-complexes, the two
formulations are indeed equivalent [12, Remark 3.13].

4.3. Vanishing results for fibrations. We apply Theorem 1.1 and Theo-
rem 3.2 in the case of the class Am of amenable groups to obtain vanishing
results for the comparison map and simplicial volume. The class Am is
closed under subgroups, isomorphisms, quotients, and extension by Abelian
groups.
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Corollary 4.8 (vanishing result for fibrations). Let p : E → B be a fibration
with a path-connected base space. Let x0 ∈ B be a non-degenerate basepoint
of B and let F := p−1(x0). Moreover, let s ≥ catAm(F ) · catLS(p). Then:

(1) the comparison map compsE : Hs
b (E)→ Hs(E) is zero;

(2) all classes α ∈ Hs(E;R) have vanishing `1-seminorm ‖α‖1 = 0.

Proof. From Theorem 3.1 and Remark 3.2 we obtain catAm(E) ≤ catAm(F )·
catLS(p). Thus, the claim follows by applying Gromov’s vanishing theo-
rem 4.6. �

Corollary 4.9 (simplicial volume and fibre bundles). Let M be an oriented
closed connected manifold that is the total space of a fibre bundle p : M → B
with oriented closed connected fibre N and base B. If

catAm(N) ≤ dim(M)

dim(B) + 1
,

then ‖M‖ = 0.

Proof. In view of Gromov’s vanishing theorem (Theorem 4.6), it suffices
to show that catAm(M) ≤ dim(M). Using Theorem 1.1, the fact that
catLS(B) ≤ dim(B) + 1, and the hypothesis on N , we indeed obtain

catAm(M) ≤ catAm(N) ·
(
dim(B) + 1

)
≤ dim(M),

as desired. �

Corollary 4.10 (simplicial volume of mapping tori). Let M be an oriented
closed connected manifold that is a mapping torus of a self-homeomorphism
of an oriented closed connected manifold N with

2 · catAm(N) ≤ dim(N) + 1 .

Then, we have ‖M‖ = 0.

Proof. This is a special case of Corollary 4.9. �

Example 4.11. A classical question in hyperbolic geometry is to under-
stand when hyperbolic manifolds fiber over the circle [1, 2]. Since the Euler
characteristic in even dimension is proportional to the volume of hyperbolic
manifolds, it is immediate to see that there are no even dimensional hyper-
bolic manifolds that fiber over the circle. On the other hand, the question
is still open in odd dimension greater than 3.

As hyperbolic manifolds have non-zero simplicial volume (Remark 4.5),
Corollary 4.10 shows at least that odd-dimensional hyperbolic manifolds
that fiber over the circle cannot have fiber with small amenable category.

Remark 4.12. Corollary 4.10 shows that mapping tori over connected
sums M of amenable manifolds (of dimension at least 3) have zero sim-
plicial volume (because catAm(M) ≤ dim(M) [22, Lemma 1][12, Proposi-
tion 6.7]). This result may be interpreted as an extension of the classical
result about the vanishing of the simplicial volume of manifold fibre bundles
with amenable fiber [35, Exercise 14.15].
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Bucher and Neofytidis established vanishing results for simplicial volume
of certain mapping tori over connected sums M of manifolds with zero sim-
plicial volume [10, Theorem 1.7]. Their approach uses refined information on
the structure of the self-glueing homeomorphism M → M . Not all of these
vanishing results can be recovered from Corollary 4.10 (which is ignorant of
the glueing map) and vice versa.

Remark 4.13. In the situation of mapping tori, the open amenable cov-
ers obtained via the proof of Corollary 4.10 coincide with the obvious one
obtained by doubling an optimal open amenable cover (Ui)i∈I of the fiber:
We can “split” the mapping torus of f : N → N into two open overlapping
cylinders N×J1 and N×J2 that are glued appropriately. Then the mapping
torus bundle is trivial over J1 and J2 and (Ui×J1)i∈I ∪ (Ui×J2)i∈I gives an
amenable open cover of the mapping torus of f consisting of 2 · |I| elements.

Remark 4.14. It is tempting to prove Corollary 4.8, Corollary 4.9, and
Corollary 4.10 via the Hochschild-Serre spectral sequence for (bounded) co-
homology. However, as there is no “five lemma for zero maps”, there does
not seem to be a direct way to do this.

Example 4.15. The following example shows that in Theorem 1.1, we
cannot replace catLS(B) by catG (B): There exist mapping tori M of oriented
closed connected hyperbolic surfaces N that are oriented closed connected
hyperbolic 3-manifolds. Because catAm(S1) = 1, we then have (Remark 4.5,
Theorem 4.6)

• catAm(N) · catAm(S1) = 3 · 1, but
• catAm(M) = 4.

5. The fibre (non-)collapsing assumption

In the context of minimal volume entropy, growth conditions on groups
naturally occur. We will explain how the fibre collapsing and non-collapsing
conditions by Babenko and Sabourau are related to categorical invariants
for classes of groups with controlled growth. In Section 6, we will apply our
estimates for fibrations to this setting.

5.1. Groups with controlled growth. To state the fibre (non-)collapsing
conditions, we introduce the corresponding classes of groups with controlled
growth. Because categorical invariants work better with classes of groups
that are closed under subgroups, we consider the following construction:

Remark 5.1. Let G be a class of groups. We set

G :=
{

Γ ∈ Ob(Group)
∣∣ ∀Λ≤Γ (Λ finitely generated⇒ Λ ∈ G )

}
.

Then we have:

(1) The class G is closed under taking subgroups.
(2) If G is closed under isomorphisms, then G is closed under isomor-

phisms.
(3) If G is closed under quotients, then G is closed under quotients.
(4) If G is closed under taking finitely generated subgroups, then the

finitely generated groups in G coincide with the finitely generated
groups in G .
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Example 5.2 (classes of groups of controlled growth). Let δ ∈ R>0. The
standard inheritance properties of growth conditions in finitely generated
groups show that the following classes of groups are closed with respect to
isomorphisms, finitely generated subgroups, and quotients:

• The class Polyfg of finitely generated groups of polynomial growth.
By the polynomial growth theorem [23], this class coincides with the
class of all finitely generated virtually nilpotent groups.
• The class Subexpfg of finitely generated groups of subexponential

growth.

• The class Subexpfg
<δ of finitely generated groups of subexponential

growth with subexponential growth rate < δ.

By Remark 5.1, the associated classes

Poly := Polyfg, Subexp := Subexpfg, Subexp<δ := Subexpfg
<δ

are closed under isomorphisms, subgroups, and quotients. Moreover, the
finitely generated groups in these classes are exactly the groups in Polyfg,

Subexpfg, Subexpfg
<δ, respectively.

Let Expfg
<δ be the class of finitely generated groups that admit a finite gen-

erating set whose growth rate is at most exponential of exponential growth

rate < δ. In other words, a finitely generated group Γ does not lie in Expfg
<δ

if and only if its uniform exponential growth rate uexp(Γ) is at least δ. It

should be noted that Expfg
<δ is not closed under taking finitely generated

subgroups.

5.2. The fibre (non-)collapsing assumption. We recall the fibre (non-)
collapsing assumptions by Babenko and Sabourau [4]. For convenience,
we formulate the collapsing condition for classes of groups; geometrically
relevant choices are the classes Poly, Subexp, and Subexp<δ.

Definition 5.3 (fibre collapsing assumption; FCA). Let G be a class of
groups.

• Let k ∈ N. A finite simplicial complex X satisfies the fibre collapsing
assumption with respect to G in dimension k if there exists a simpli-
cial map f : X → P to a finite simplicial complex P with dimP ≤ k
and such that for all points p ∈ P (not necessarily vertices), the
fibre f−1(p) is a G -subset of X.
• A finite simplicial complex X satisfies the fibre collapsing assumption

with respect to G if X satisfies the fibre collapsing assumption with
respect to G in dimension dimX − 1.

Remark 5.4 (fundamental groups of fibres are finitely generated). Let X be
a finite simplicial complex, let P be a simplicial complex, and let f : X → P
be a simplicial map. Then, for every point p ∈ P , the fibre f−1(p) is a finite
simplicial complex. In particular, the fundamental groups of all components
of f−1(p) are finitely generated.

Remark 5.5. Let G be a class of groups that is closed under finitely gen-
erated subgroups, let X be a finite simplicial complex, and let k ∈ N. Then
X satisfies the fibre collapsing assumption with respect to G in dimension k
if and only if it does so for G :
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As G is closed under finitely generated subgroups, we have G ⊂ G (Re-
mark 5.1). In particular, the FCA for G implies the FCA for G . For the
other implication, we argue as follows: Let P be a simplicial complex and let
f : X → P be a simplicial map. Then, for every point p ∈ P , the fundamen-
tal groups of all components of f−1(p) are finitely generated (Remark 5.4).
As every finitely generated subgroup in G also lies in G , the complex X
satisfies the fibre collapsing assumption with respect to G in dimension k if
it does so for G .

Definition 5.6 (fibre non-collapsing assumption; FNCA). A finite simpli-
cial complex X satisfies the fibre non-collapsing assumption if there exists
a δ ∈ R>0 with the following property: For each finite simplicial complex P
with dimP < dimX and for each simplicial map f : X → P , there exists
a point p ∈ P and an x ∈ f−1(p) such that π1(i)(π1(f−1(p), x)) has uni-
formly exponential growth with exponential growth rate at least δ, where
i : f−1(p) ↪→ X denotes the inclusion map (in other words: f−1(p) is not

an Expfg
<δ-subset of X).

Proposition 5.7. Let π : X → X be a simplicial finite-sheeted covering of
finite simplicial complexes. If X satisfies the fibre non-collapsing assump-
tion, then so does X.

Proof. Let δ ∈ R>0 be such that X satisfies the FNCA with uniformly
exponential growth rate ≥ δ. We write d ∈ N for the number of sheets of π
and show that X satisfies the FNCA with uniformly exponential growth
rate ≥ 2d−1

√
δ. The basic reason is that uniformly exponential growth is

inherited by finite index supergroups.
Let P be a finite simplicial complex with dimP < dimX = dimX and

let f : X → P be a simplicial map. Then, f := f ◦ π : X → P is a simplicial

map. As X satisfies FNCA, there is a point p ∈ P and an x ∈ f−1
(p) ⊂ X

such that the image

Λ := π1(i)
(
π1(f

−1
(p), x)

)
⊂ π1(X,x)

has uniform exponential growth rate ≥ δ, where i denotes the inclusion
into X. As π1(π) is injective, the group (where i is the inclusion into X)

Γ := π1(i)
(
π1(f−1(p), x)

)
⊂ π1(X,x)

contains a finite index subgroup Λ that is isomorphic to Λ and has index
at most [π1(X,x) : Λ] = d. Therefore, Γ has uniformly exponential growth
with uniformly exponential growth rate at least [39, Proposition 3.3][16,
Proposition 2.4]

2·[Γ:Λ]−1
√

uexp(Λ) ≥ 2·d−1

√
uexp(Λ) ≥ 2·d−1

√
δ. �

5.3. F(N)CA via category invariants. As observed by Babenko and
Sabourau [4, Proposition 2.13, Proposition 3.10], the fibre collapsing and
non-collapsing assumptions are connected to multiplicity conditions on open
covers. We will recast this result in terms of categorical invariants.
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Proposition 5.8 (fibre conditions and categorical invariants). Let G be a
class of groups that is closed under isomorphisms, let X be a finite simplicial
complex, and let k ∈ N. Then:

(1) If X satisfies the fibre collapsing assumption with respect to G in
dimension k, then

catG (X) ≤ k + 1.

(2) If in addition G is closed under finitely generated subgroups and if
catG (X) ≤ k+1, then there exists an iterated barycentric subdivision
of X that satisfies the fibre collapsing assumption with respect to G
in dimension k.

Proof. The proof of Babenko and Sabourau [4, Proposition 2.13] for the
connection between the fibre collapsing assumption and multiplicities of
open covers with π1-restrictions also works in the full generality of classes
of groups. The condition on the multiplicity of the open covers can be
adapted into a condition on catG . For the sake of completeness, we recall
the arguments:

Ad 1. Let f : X → P be a simplicial map witnessing that X satisfies the
fibre collapsing assumption with respect to G in dimension k. Taking the
barycentric subdivision, yields a simplicial map f ′ : X ′ → P ′ between the
barycentric subdivisions that witnesses that X ′ satisfies the fibre collapsing
assumption with respect to G in dimension k (as subsets of the geometric
realisations, the fibres of f and f ′ agree). Because X ′ is homeomorphic
to X, it suffices to show that catG (X ′) ≤ k + 1.

Let U = (Ui)i∈I be the open stars cover of P ′, regrouped and indexed by
the dimensions of the underlying simplices in P . Then |U| ≤ dimP + 1 =
k + 1. We now consider the pull-back cover V := (Vi)i∈I of X ′, where Vi :=
f ′−1(Ui) for all i ∈ I. Then V is an open cover of X ′ with |V| ≤ |U | ≤ k+ 1.
It thus suffices to show that each Vi is a G -subset of X ′.

Let i ∈ I. Because f ′ is a simplicial map, there exists a vertex pi ∈ P ′
such that Vi = f ′−1(Ui) deformation retracts onto the fibre f ′−1(pi). Let
ji : f

′−1(pi) ↪→ Vi and ki : Vi ↪→ X ′ denote the inclusions. Then ji is a
homotopy equivalence and so

π1(ki)
(
π1(Vi, x)

) ∼= π1(ki ◦ ji)
(
π1(f ′−1(pi), x)

)
for all x ∈ f ′−1(pi). Therefore, Vi is a G -subset of X ′ and we conclude that
catG (X) = catG (X ′) ≤ k + 1.

Ad 2. For the converse implication, we use the nerve construction. Let
U be an open G -cover of X with |U| ≤ k + 1. Then, the nerve P of U is a
finite simplicial complex with dimP = multU − 1 ≤ k. Let Φ be a partition
of unity subordinate to U and let f : X → P be the nerve map associated
with Φ. In general, f is not simplicial; this can be handled as follows: By the
Lebesgue lemma, there is an iterated barycentric subdivision X ′ of X such
that each simplex of X ′ is contained in one of the sets in U and such that
f admits a simplicial approximation f ′ : X ′ → P . If p ∈ P , then f ′−1(p) is
contained in one of the elements Ui of U . In particular: If ji : f

′−1(p) ↪→ Ui
and ki : Ui → X ′ denote the inclusions, then

π1(ki ◦ ji)
(
π1(f ′−1(p), x)

)
⊂ π1(ki)

(
π1(Ui, x)

)
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holds for all x ∈ f ′−1(p). Because Ui is a G -subset of X (whence X ′),
because G is closed under finitely generated subgroups, and because f ′ is a
simplicial map, also f ′−1(p) is a G -subset of X ′ (Remark 5.4). �

Corollary 5.9 (FCA via cat). Let X be a finite simplicial complex, let
k ∈ N, and let G be a class of groups that is closed under isomorphisms and
finitely generated subgroups. Then the following are equivalent:

(1) There exists an iterated barycentric subdivision X ′ of X that satisfies
the fibre collapsing assumption with respect to G in dimension k.

(2) We have catG (X) ≤ k + 1.
(3) We have catG (X) ≤ k + 1.

Proof. Ad 1. =⇒ 2. Let us suppose that there exists an iterated barycen-
tric subdivision X ′ of X that satisfies the fibre collapsing assumption with
respect to G in dimension k. Because G is closed under finitely generated
subgroups, Proposition 5.8 shows that

catG (X ′) ≤ k + 1.

As X ′ and X are homeomorphic, we obtain catG (X) = catG (X ′) ≤ k + 1.
Ad 2. =⇒ 3. This is a direct consequence of the fact that G ⊂ G .
Ad 3. =⇒ 1. Let catG (X) ≤ k + 1. As G is closed under subgroups, by

Proposition 5.8, there exists an iterated barycentric subdivision X ′ of X that
satisfies the fibre collapsing assumption with respect to G in dimension k.
We can now apply Remark 5.5 to pass to G . �

Example 5.10. Let X be a finite simplicial complex. Then, by Corol-
lary 5.9, catPoly(X) ≤ dimX is equivalent to the existence of an iterated
barycentric subdivision of X that satisfies the fibre collapsing condition with
polynomial growth.

Remark 5.11 (dimension 2). The following generalisation of a result of
Bregman and Clay [8, Proposition 4.1] is an instance of general consider-
ations on categorical invariants: Let G be a class of groups that is closed
under isomorphisms, finitely generated subgroups, and quotients. Let Γ be
a group that does not lie in G and let X be a finite simplicial complex
with π1(X) ∼= Γ. Then the following are equivalent [12, Corollary 5.4 and
the subsequent remark]:

(1) The group Γ is the fundamental group of a graph of groups whose
vertex and edge groups all lie in G .

(2) We have catG (X) = 2.

If X is of dimension 2, by Corollary 5.9, these conditions are equivalent to:

(3) There exists an iterated barycentric subdivision of X that satisfies
the fibre collapsing assumption with respect to G .

(4) We have catG (X) = 2.

For example, this applies to the classes Poly, Subexp, and Subexp<δ.

Corollary 5.12 (FNCA via cat). Let X be a finite simplicial complex and let
δ ∈ R>0. If cat

Expfg
<δ

(X) > dimX, then X satisfies the fibre non-collapsing

condition (with uniform exponential growth rate δ).
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Proof. This follows from the definition of the fibre non-collapsing condition
and the contraposition of the first part of Proposition 5.8. �

It is not clear to us that the converse of Corollary 5.12 also holds (up to

subdivision) because Expfg
<δ is not closed under finitely generated subgroups.

For later use, we give an example that slightly generalises an example by
Babenko and Sabourau [4, Proposition 3.7]:

Example 5.13. Let N1, . . . , Nr be oriented closed connected rationally es-
sential smooth manifolds of dimension ≥ 2 with non-elementary hyperbolic
fundamental group. Then the product M := N1 × · · · × Nr satisfies the
FNCA with respect to every triangulation: We proceed in the following
steps:

(0) If Γ is a finitely generated hyperbolic group, then there exists a δΓ ∈
R>0 such that: Every finitely generated subgroup Λ of Γ is virtually
cyclic or satisfies uexp(Λ) ≥ δΓ.

(1) There exists a δ ∈ R>0 such that: Every finitely generated sub-
group Λ of π1(M) is amenable or satisfies uexp(Λ) ≥ δ.

(2) catAm(M) > dim(M).
(3) catExp<δ(M) > dim(M).

The last property implies that M satisfies the FNCA (Corollary 5.12).
Ad 0. This is a result of Delzant an Steenbock [17, Theorem 1.1].
Ad 1. We apply part 0 to the π1(Nj) and set δ := min(δπ1(N1), . . . , δπ1(Nr)).

Let Λ ⊂ π1(M) be a finitely generated subgroup. We distinguish two cases:

• For all j ∈ {1, . . . , r}, the projection pj(Λ) ⊂ π1(Nj) is virtually
cyclic.
• There exists a j ∈ {1, . . . , r} such that pj(Λ) ⊂ π1(Nj) is not virtu-

ally cyclic.

In the first case, Λ is isomorphic to a subgroup of a product of r virtually
cyclic groups and thus amenable. In the second case, Λ projects onto a
subgroup Λj of the non-elementary hyperbolic group π1(Nj) that is not
virtually cyclic; thus,

uexp(Λ) ≥ uexp(Λj) ≥ δπ1(Nj) ≥ δ.

Ad 2. Let j ∈ {1, . . . , r}. Then Nj has non-zero simplicial volume (Re-
mark 4.5). Therefore, also M = N1 × · · · × Nr has non-zero simplicial
volume [24]. In particular, catAm(M) > dim(M) (Theorem 4.6).

Ad 3. By the first part, all finitely generated subgroups of π1(M) that
lie in Exp<δ are amenable. In combination with the second part, we obtain
catExp<δ(M) ≥ catAm(M) > dim(M).

6. Applications to minimal volume entropy

We recall the definition of minimal volume entropy (Section 6.1) and the
(non-)vanishing results of Babenko and Sabourau (Section 6.2). In Sec-
tion 6.3, we derive the vanishing results for minimal volume entropy and
fibrations. In Section 6.4, we extend the FNCA examples of Babenko and
Sabourau.
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6.1. Minimal volume entropy. The minimal volume entropy measures
the minimal possible growth rate of balls.

Definition 6.1 (minimal volume entropy). Let X be a finite connected
simplicial complex.

• A piecewise Riemannian metric on X is a family of Riemannian
metrics on all simplices of X that is compatible along common sub-
simplices. Let Riem(X) be the set of all piecewise Riemannian met-
rics on X.
• Let g be a piecewise Riemannian metric on X. Then the volume

entropy of (X, g) is defined as

ent(X, g) := lim
R→∞

1

R
· log vol

(
B(R, x̃), g̃

)
,

where x̃ is a vertex of the universal covering X̃ of X, where g̃ is
the pull-back of g to X̃, and where B(R, x̃) is the ball of radius R

around x̃ in X̃. (The choice of x̃ does not matter).
• The minimal volume entropy of X is defined by

minent(X) := inf
g∈Riem(X)

ent(X, g) · vol(X, g)1/dim(X).

Remark 6.2 (minimal volume entropy and barycentric subdivisions). Let
X be a finite connected simplicial complex.

If X ′ is the barycentric subdivision of X, then minent(X ′) = minent(X),
as can be seen by smooth approximation of piecewise Riemannian metrics
on X ′ by piecewise Riemannian metrics on X.

Inductively, we obtain that if X ′ is an iterated barycentric subdivision
of X, then minent(X ′) = minent(X).

Remark 6.3 (minimal volume entropy of smooth manifolds). Let M be a
closed connected smooth manifold. Then the minimal volume entropy of M
is defined as

minent(M) := inf
g∈Riem(M)

ent(M, g) · vol(M, g)1/dim(M),

where Riem(M) is the set of all actual Riemannian metrics on M . If
X is a finite simplicial complex that triangulates M , then minent(M) =
minent(X) [5, Lemma 2.3]. In fact, minimal volume entropy is a topological
invariant of smooth manifolds in a very strong sense [6, 9].

6.2. The (non-)vanishing theorems by Babenko and Sabourau.

Theorem 6.4 (FCA and vanishing; [4, Theorem 1.3]). Let X be a finite
connected simplicial complex of dimension n. If there is a k ∈ {0, . . . , n−1}
such that X satisfies the fibre collapsing assumption for Subexp<(n−k)/n in
dimension k, then

minent(X) = 0.

Theorem 6.5 (FNCA and non-vanishing; [4, Theorem 1.5]). Let X be a
finite connected simplicial complex that satisfies the fibre non-collapsing as-
sumption. Then

minent(X) > 0.
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We can reformulate these (non-)vanishing results in terms of generalised
categorical invariants:

Corollary 6.6. Let X be a finite connected simplicial complex.

(1) If there is a k ∈ {0, . . . ,dimX−1} with catSubexp<(n−k)/n
(X) ≤ k+1,

then minent(X) = 0.
(2) If there is a δ ∈ R>0 with cat

Expfg
<δ

(X) > dimX, then minent(X) > 0.

Proof. Ad 1. If catSubexp<(n−k)/n
(X) ≤ k + 1, then an interated subdivi-

sion X ′ of X satisfies the fibre collapsing assumption for Subexp<(n−k)/n

in dimension k (Corollary 5.9). Thus, minent(X ′) = 0, by the vanishing
theorem (Theorem 6.4). We then use that minent(X) = minent(X ′) (Re-
mark 6.2).

Ad 2. This is an immediate consequence of Corollary 5.12 and the non-
vanishing theorem (Theorem 6.5). �

6.3. Vanishing results for fibrations. We now apply Theorem 1.1 in
the case of growth classes of groups to obtain vanishing results for minimal
volume entropy.

Corollary 6.7 (minimal volume entropy and fibrations). Let p : E → B be
a simplicial fibration of finite connected simplicial complexes. Let x0 ∈ B be
a vertex and let F := p−1(x0). If

catSubexp<1/ dim(X)
(F ) · catLS(B) ≤ dim(X),

then minent(X) = 0.

Proof. Under the given hypotheses, Theorem 1.1 shows that

catSubexp<1/ dim(X)
(X) ≤ catSubexp<1/ dim(X)

(F ) · catLS(B) ≤ dim(X).

Therefore, Corollary 6.6 implies minent(X) = 0. �

Corollary 6.8 (minimal volume entropy and fibre bundles). Let M be an
oriented closed connected smooth manifold that is the total space of a fibre
bundle M → B with oriented closed connected smooth fibre N and base B.
If

catSubexp<1/ dim(M)
(N) ≤ dim(M)

dim(B) + 1
,

then minent(M) = 0.

Proof. Triangulating M , B, and N and subdividing often enough, we may
assume that we have a simplicial fibration between finite simplicial com-
plexes of the corresponding dimensions. Moreover, the notions of minimal
volume entropy for smooth manifolds and their triangulations coincide (Re-
mark 6.3). Using the estimate catLS(B) ≤ dim(B) + 1, the result follows
from Corollary 6.7. �

Corollary 6.9 (minimal volume entropy of mapping tori). Let X be a finite
connected simplicial complex of dimension n that fibres as a fibre bundle over
the circle, with (simplicial) fibre F . If

2 · catSubexp<1/n
(F ) ≤ dimF + 1,

then minentX = 0.
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Proof. This is a special case of Corollary 6.7. �

6.4. FNCA, minimal volume entropy, and simplicial volume. For
manifolds, minimal volume entropy is an upper bound for simplicial volume
(up to a dimension constant) [24][7, Théorème D]; in particular, Remark 4.5
thus leads to examples of positive minimal volume entropy. Conversely, the
following is an open problem [4]:

Question 6.10. Let M be an oriented closed connected smooth manifold
with ‖M‖ = 0. Does this imply that minent(M) = 0 ?

By now, we know that the previous question admits a positive answer in
dimension 2 [30] and for all oriented closed connected geometric manifolds in
dimension 3 [38] (whence all by Perelemann’s proof of Thurston’s geometri-
sation conjecture) and 4 [41]. Even though we do not expect this question
to have a positive answer in full generality; a particularly interesting special
case to study would be aspherical oriented closed connected manifolds.

As shown by Babenko and Sabourau, for finite simplicial complexes,
FNCA (and thus positive minimal volume entropy) does not necessarily im-
ply the non-vanishing of “simplicial volume” (interpreted appropriately) [4,
Theorem 1.6]. Using a variation of their construction, we obtain aspherical
examples of this type:

Proposition 6.11. Let n ∈ N≥2. Then, there exists a finite connected
simplicial complex X with the following properties:

(1) The space X is aspherical.
(2) The complex X satisfies the fibre non-collapsing assumption.
(3) We have dimX = n and Hn(X;Z) ∼= 0.

Proof. As n ≥ 2, there exists a k ∈ N with n = 2 · (k + 1) or n = 3 + 2 · k.
Let N be the product of k oriented closed connected hyperbolic surfaces. In
the first case, let Σ be a non-orientable closed connected hyperbolic surface;
in the second case, we take a non-orientable closed connected hyperbolic
3-manifold. We then set

M := Σ×N
and consider the orientation double covering p : M → M of M . Moreover,
we triangulate Σ×N and take the induced triangulation of M .

ThenM satisfies FNCA (Example 5.13). Therefore alsoM satisfies FNCA
(Proposition 5.7). By construction, M is aspherical, n-dimensional, and
Hn(M ;Z) ∼= 0 (as M is non-orientable).

Alternatively, one can also carry out the same argument when M is a
non-orientable closed connected hyperbolic n-manifold; such manifolds in-
deed exist [34, Theorem 1.2][31, Section 4.2]. The argument above has the
advantage that it does not need existence theorems of such manifolds in
higher dimensions. �

Corollary 6.12. Let n ∈ N≥2 and let c ∈ R>0. Then, there exists a finite
connected simplicial complex X with the following properties:

(1) The space X is aspherical.
(2) We have minent(X) > c.
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(3) We have dimX = n and Hn(X;Z) ∼= Z as well as

∀α∈Hn(X;R) ‖α‖1 = 0.

Proof. Let Y be an aspherical finite simplicial complex of dimension n as pro-
vided by Proposition 6.11. In particular, minent(Y ) > 0 because of FNCA
(Theorem 6.5). Taking the wedge of a large enough number m of copies of Y
results in a finite aspherical simplicial complex Z :=

∨
m Y of dimension n

with [3, Theorem 2.6]

minent(Z) ≥ m ·minent(Y ) > c and Hn(Z;Z) ∼= 0.

Then X := (S1)×n∨Z is a finite aspherical simplicial complex of dimension n
with

minent(X) ≥ minent
(
(S1)×n

)
+ minent(Z) > c and Hn(X;Z) ∼= Z.

The fundamental class of (S1)×n pushes forward to a generator α ofHn(X;R).
As the n-torus has simplicial volume 0, it follows that ‖α‖1 = 0. �
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[33] C. Löh and R. Sauer. Bounded cohomology of amenable covers via classifying spaces.
Enseign. Math., 66:147–168, 2020. Cited on page: 7

[34] D. D. Long and A. W. Reid. Constructing hyperbolic manifolds which bound geo-
metrically. Math. Res. Lett., 8(4):443–455, 2001. Cited on page: 17

[35] W. Lück. L2-Invariants: Theory and Applications to Geometry and K-Theory, vol-
ume 44 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Springer-
Verlag, Berlin, 2002. Cited on page: 8
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