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Abstract. Taking the `1-completion and the topological dual of the singular
chain complex gives rise to `1-homology and bounded cohomology respec-
tively. Unlike `1-homology, bounded cohomology is very well understood
by the work of Gromov and Ivanov. Based on an observation by Matsumoto
and Morita, we derive a mechanism linking isomorphisms on the level of
homology of Banach chain complexes to isomorphisms on the level of co-
homology of the dual Banach cochain complexes and vice versa. Therefore,
certain results on bounded cohomology can be transferred to `1-homology.
For example, we obtain a new proof of the fact that `1-homology only de-
pends on the fundamental group and that `1-homology with twisted coeffi-
cients admits a description in terms of projective resolutions. The latter one
in particular fills a gap in Park’s approach.
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1 Introduction

Semi-norms on singular homology provide topological invariants such as the sim-
plicial volume. However, for example, singular homology itself turns out not to
be very feasible for the study of the `1-semi-norm (and hence of the simplicial vol-
ume). Only by passing to related theories such as bounded cohomology or `1-hom-
ology the bigger picture becomes visible.

Unlike `1-homology, bounded cohomology is very well understood by the work
of Gromov [5] and Ivanov [9]. One of the main features of bounded cohomology is
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1 Introduction Isomorphisms in `1-homology

that it only depends on the fundamental group of the space in question [5, 9; p. 40,
Theorem 4.3]. Hence, it is natural to ask whether the same is true for `1-homology.

A first step towards a result of this type is the observation by Matsumoto and
Morita [10; Corollary 2.4] that the `1-homology of a space is trivial if and only
if its bounded cohomology is trivial. More generally, the homology of a Banach
chain complex vanishes if and only if the cohomology of the dual Banach cochain
complex vanishes (Theorem (3.4)).

Based on Matsumoto and Morita’s result, the fact that bounded cohomology of
spaces with amenable fundamental group is trivial, and an `1-version of Brown’s
theorem, Bouarich [2; Corollaire 6] gave the first proof that `1-homology depends
only on the fundamental group.

In this article, we present a different, more lightweight, strategy: Applying the
generalised version of Matsumoto and Morita’s result to mapping cones of mor-
phisms of Banach chain complexes links isomorphisms on homology to isomor-
phisms in cohomology:

Theorem (1.1). Let f : C −→ D be a morphism of Banach chain complexes and let
f ′ : D′ −→ C′ be its dual.

1. Then the induced homomorphism H∗( f ) : H∗(C) −→ H∗(D) is an isomorphism
of vector spaces if and only if H∗( f ′) : H∗(D′) −→ H∗(C′) is an isomorphism of
vector spaces.

2. Furthermore, if H∗( f ′) : H∗(D′) −→ H∗(C′) is an isometric isomorphism, then
also H∗( f ) : H∗(C) −→ H∗(D) is an isometric isomorphism.

Notice however, that in general the cohomology of the dual complex does not
coincide with the dual of the homology (see Remark (3.3)).

In the following, the main examples for Banach (co)chain complexes are `1-chain
complexes and bounded cochain complexes of topological spaces: The `1-chain
complex C`1

∗ (X) of a topological space X is the `1-completion of the singular chain
complex of X with real coefficients and `1-homology of X, denoted by H`1

∗ (X), is
defined as the homology of the `1-chain complex.

Dually, the bounded cochain complex C∗b(X) of a topological space X is the topo-
logical dual of C`1

∗ (X) and bounded cohomology, denoted by H∗b(X), is the coho-
mology of C∗b(X).

Applying Theorem (1.1) in this setting thus allows to transfer certain results on
bounded cohomology to `1-homology. For example, we obtain a new proof of the
fact that `1-homology depends only on the fundamental group:

Theorem (1.2). The `1-homology of topological spaces depends only on the fundamental
group. More precisely: Let f : X −→ Y be a continuous map of connected countable CW-
complexes inducing an isomorphism on the level of fundamental groups. Then the induced
map

H`1

∗ ( f ) : H`1

∗ (X) −→ H`1

∗ (Y)

is an isometric isomorphism with respect to the `1-semi-norm.

More generally, the homomorphism π1( f ) is allowed to have amenable kernel
(Corollary (4.3)).
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Another important class of Banach (co)chain complexes is provided by the `1-
completion C`1

∗ (G) of the bar resolution of a discrete group G, as well as the dual
complex C∗b(G). These complexes give rise to `1-homology and bounded cohomol-
ogy of discrete groups respectively. Applying Theorem (1.1) in this situation shows
that `1-homology and bounded cohomology of groups behave similarly (see Sub-
section 5.3).

Like ordinary group (co)homology `1-homology and bounded cohomology of
groups can be computed by certain projective and injective resolutions [9, 13].
More astonishingly, Ivanov showed that bounded cohomology of a space coin-
cides with bounded cohomology of the corresponding fundamental group [9; The-
orem 4.1] and hence that bounded cohomology of topological spaces also can be
computed by certain injective resolutions.

Applying Theorem (1.1) to a suitable morphism C`1
∗ (X) −→ C`1

∗ (π1(X))π1X im-
plies that `1-homology of topological spaces admits an analogous description in
terms of projective resolutions:

Theorem (1.3). Let X be a connected countable CW-complex with fundamental group G
and let C be a strong relatively projective resolution of the trivial Banach G-module R.
Then there is a canonical isomorphism

H`1

∗ (X) ∼= H∗(CG) ∼= H`1

∗ (G).

If C is the Banach bar resolution of G, then this isomorphism is isometric.

(Park [13] already claimed that this is true. However, due to a gap in her argu-
ment, her proof is not complete. This issue is addressed in Caveat (5.9) and (6.4).)

More generally, we prove Theorem (1.3) for `1-homology with twisted coeffi-
cients (Theorem (6.3)). The corresponding generalisation of Ivanov’s result on
bounded cohomology is presented in Appendix B.

The motivation for studying not only bounded cohomology but also `1-homol-
ogy is that certain problems concerning the `1-semi-norm on singular homology
might be more accessible via `1-homology than via bounded cohomology. For ex-
ample, one might hope to get a better understanding of the semi-norms on spaces
constructed out of smaller spaces.

This paper is organised as follows: In Section 2, the basic objects of study, i.e.,
normed and Banach chain complexes, are introduced. A thorough investigation
of duality in the context of Banach chain complexes is provided in Section 3, in-
cluding a proof of Theorem (1.1). In Section 4, the duality results are applied to
the case of `1-homology thus in particular providing a proof of Theorem (1.2).
Analogously, Section 5 deals with applications of Theorem (1.1) to `1-homology
of discrete groups. The description of `1-homology of spaces in terms of projective
resolutions (and a proof of Theorem (1.3)) is given in Section 6. The background on
homological algebra in the category of Banach G-modules needed in Section 5 and
Section 6 is collected in Appendix A. Finally, Appendix B contains the description
of bounded cohomology of spaces with twisted coefficients in terms of injective
resolutions.

3
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2 Homology of normed chain complexes

In this section, we introduce the basic objects of study, i.e., normed chain com-
plexes and their homology. The homology of normed chain complexes inherits a
semi-norm. For example, in the case of the singular chain complex, this semi-norm
contains valuable geometric information such as the simplicial volume. In order
to understand the semi-norm on homology, it suffices to consider the homology
of the completion of the normed chain complex in question (Proposition (2.7)) and
hence we can restrict ourselves to the case of Banach chain complexes. For singu-
lar homology the corresponding Banach chain complex leads to the definition of
`1-homology. A concise definition of `1-homology and bounded cohomology of
topological spaces is given in Subsection 2.3.

2.1 Normed chain complexes

Definition (2.1). 1. A normed chain complex is a chain complex of normed
vector spaces, where all boundary morphisms are bounded linear operators.
Analogously, a normed cochain complex is a cochain complex of normed
vector spaces, where all coboundary morphisms are bounded linear opera-
tors.

2. A Banach (co)chain complex is a normed (co)chain complex consisting of
Banach spaces.

3. A morphism of normed (co)chain complexes is a (co)chain map between
normed (co)chain complexes consisting of bounded operators. �

In this article, all Banach spaces are Banach spaces over R and all (co)chain com-
plexes are indexed over N.

Definition (2.2). Let (C, ∂) be a normed chain complex. Then the dual cochain
complex (C′, ∂′) is the normed cochain complex defined by

∀n∈N (C′)n := (Cn)′,

where · ′ stands for taking the (topological) dual normed vector space, together
with the coboundary operators

(∂′)n := (∂n+1)′ : (C′)n −→ (C′)n+1

f 7−→
(
c 7→ f (∂n+1(c))

)
and the norm given by ‖ f ‖∞ := sup

{
| f (c)|

∣∣ c ∈ Cn, ‖c‖ = 1
}

for f ∈ (C′)n. �
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Clara Löh 2 Homology of normed chain complexes

Remark (2.3). 1. If C is a normed (co)chain complex, then the (co)boundary op-
erator can be extended to a (co)boundary operator on the completion C that is
bounded in each degree. Hence, the completion C of C is a Banach (co)chain
complex.

2. If C is a Banach chain complex, then its dual C′ is also complete and thus a
Banach cochain complex. Moreover, if C is a normed chain complex, then
C′ = (C)′.

Examples of Banach (co)chain complexes include the `1-chain complexes of topo-
logical spaces (Subsection 2.3), the completion of the bar resolution of a discrete
group (Subsection 5.2) and more general the resolutions used in the definition of
`1-homology of discrete groups (Subsection (5.1)). The corresponding dual cochain
complexes are the source of the various incarnations of bounded cohomology.

2.2 (Semi)norms on (co)homology

Clearly, the presence of chain complexes calls for the investigation of the corre-
sponding homology. In the case of normed chain complexes, the homology groups
carry an additional piece of information – the semi-norm.

Definition (2.4). 1. Let (C, ∂) be a normed chain complex and let n ∈ N. The
n-th homology of C is the quotient

Hn(C) :=
ker(∂n : Cn → Cn−1)

im(∂n+1 : Cn+1 → Cn)
.

2. Dually, if (C, δ) is a normed cochain complex, then its n-th cohomology is the
quotient

Hn(C) :=
ker(δn : Cn → Cn+1)

im(δn−1 : Cn−1 → Cn)
.

3. Let C be a normed chain complex. Then the norm ‖ · ‖ on C induces a semi-
norm, also denoted by ‖ · ‖, on the homology H∗(C) as follows: If α ∈ Hn(C),
then

‖α‖ := inf
{
‖c‖

∣∣ c ∈ Cn, ∂(c) = 0, [c] = α
}

.

Similarly, we define a semi-norm on the cohomology of normed cochain com-
plexes. �

Because the images of the (co)boundary operators of Banach (co)chain complexes
are not necessarily closed, the induced semi-norms on (co)homology need not be
norms. Therefore, it is sometimes convenient to look at the corresponding reduced
versions instead:

Definition (2.5). 1. Let (C, ∂) be a normed chain complex and let n ∈ N. Then
the n-th reduced homology of C is given by

Hn(C) := ker ∂n/im ∂n+1,

where · denotes the closure in C.
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2. Analogously, if (C, δ) is a normed cochain complex and n ∈ N, then the n-th
reduced cohomology of C is given by

Hn(C) := ker δn/im δn−1. �

Remark (2.6). Any morphism f : C −→ D of normed chain complexes induces
linear maps Hn( f ) : Hn(C) −→ Hn(D). Since f is continuous in each degree,
these maps descend to linear maps Hn( f ) : Hn(C) −→ Hn(D). Moreover, the
maps Hn( f ) and Hn( f ) are bounded.

In order to understand semi-norms on the homology of normed chain com-
plexes, it suffices to consider the case of Banach chain complexes [17; Lemma 2.9]:

Proposition (2.7). Let (D, ∂) be a normed chain complex and let (C, ∂) be a dense sub-
complex. Then the induced map H∗(C) −→ H∗(D) is isometric. In particular, the induced
map H∗(C) −→ H∗(D) must be injective.

Proof. In the following, we write i : C ↪→ D for the inclusion and ‖ · ‖ for the norm
on D.

Since C is a subcomplex, ‖H∗(i)‖ ≤ 1. Conversely, let z ∈ Cn be a cycle and let
ε ∈ R>0. Furthermore, let z ∈ Dn be a cycle such that [z] = Hn(i)([z]) ∈ Hn(D). To
prove the proposition, it suffices to find a cycle z′ ∈ Cn satisfying

[z′] = [z] ∈ Hn(C) and ‖z′‖ ≤ ‖z‖+ ε.

By definition of z, there must be a chain w ∈ Dn+1 with ∂n+1(w) = i(z)− z. Since
Cn+1 lies densely in Dn+1 and since ‖∂n+1‖ is finite, there is a chain w ∈ Cn+1 such
that

‖w− i(w)‖ ≤ ε

‖∂n+1‖
.

Then z′ := z + ∂(w) ∈ Cn is a cycle with [z′] = [z] ∈ Hn(C) and∥∥z− i(z′)
∥∥ =

∥∥∂n+1(w− i(w))
∥∥ ≤ ε.

In particular, ‖z′‖ ≤ ‖z‖+ ε. Hence, Hn(i) must be an isometry.

2.3 Main examples – `1-homology and bounded cohomology

We now introduce `1-homology of topological spaces (with trivial coefficients).
Other flavours of `1-homology like `1-homology of discrete groups or `1-homology
with twisted coefficients are presented in Subsection 5.1 and Subsection 6.1 respec-
tively.

Definition (2.8). Let (X, A) be a pair of topological spaces. The `1-norm on the
singular chain complex C∗ (X) with real coefficients is defined as follows: If c =
∑k

j=0 aj · σj ∈ C∗ (X), then

‖c‖1 :=
k

∑
j=0
|aj|.
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Since C∗ (A) is `1-closed in C∗ (X), the semi-norm on the quotient C∗ (X, A) =
C∗ (X)/C∗ (A) induced by ‖ · ‖1 is a norm, which is also denoted by ‖ · ‖1. �

With respect to the `1-norm, the boundary operator ∂n : Cn (X, A) → Cn−1 (X, A)
is a bounded operator with operator norm (n + 1). Hence, C∗ (X, A) is a normed
chain complex. Clearly, C∗ (X) and C∗ (X, A) are in general not complete and thus
these complexes are no Banach chain complexes.

Definition (2.9). Let (X, A) be a pair of topological spaces. The `1-chain complex
of (X, A) is the `1-completion

C`1

∗ (X, A) := C∗ (X, A)
`1

of the normed chain complex C∗ (X, A). We write C`1
∗ (X) := C`1

∗ (X, ∅). �

By Remark (2.3), the completion C`1
∗ (X, A) is a Banach chain complex. Further-

more, it can be shown that there is an isometric isomorphism

C`1

∗ (X, A) = C`1

∗ (X)/C`1

∗ (A)

of Banach chain complexes.

Definition (2.10). If (X, A) is a pair of topological spaces, then the Banach cochain
complex

C∗b(X, A) :=
(
C`1

∗ (X, A)
)′ = (

C∗ (X, A)
)′

is called the bounded cochain complex of (X, A). Moreover, we use the abbrevia-
tion C∗b(X) := C∗b(X, ∅). �

Using the isomorphism C`1
∗ (X, A) = C`1

∗ (X)/C`1
∗ (A), it is not difficult to see that

there is for all n ∈ N an isometric isomorphism [15; Proposition 2.1.7]

Cn
b (X, A) ∼=

{
f ∈ Cn

b (X)
∣∣ f |C`1

n (A) = 0
}

.

If f : (X, A) −→ (Y, B) is a continuous map of pairs of topological spaces, then
the induced map C∗ ( f ) : C∗ (X, A) −→ C∗ (Y, B) is a chain map that is bounded
in each degree (with operator norm equal to 1), i.e., it is a morphism of normed
chain complexes. Its extension C`1

∗ ( f ) : C`1
∗ (X, A) −→ C`1

∗ (Y, B) is a morphism of
Banach chain complexes and its dual C∗b( f ) : C∗b(Y, B) −→ C∗b(X, A) is a morphism
of Banach cochain complexes.

Definition (2.11). Let (X, A) be a pair of topological spaces.

1. The `1-homology of (X, A) is defined as

H`1

∗ (X, A) := H∗
(
C`1

∗ (X, A)
)
.

Dually, the bounded cohomology of (X, A) is given by

H∗b(X, A) := H∗
(
C∗b(X, A)

)
.

We write H`1
∗ (X) := H`1

∗ (X, ∅) and H∗b(X) := H∗b(X, ∅) for short.
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2. The semi-norms on H`1
∗ (X, A) and H∗b(X, A) are the ones induced by ‖ · ‖1

and ‖ · ‖∞ respectively and are also denoted by ‖ · ‖1 and ‖ · ‖∞ respectively.

3. If f : (X, A) −→ (Y, B) is a continuous map of pairs of topological spaces,
then the maps on `1-homology and bounded cohomology induced by C`1

∗ ( f )
and C∗b( f ) are denoted by H`1

∗ ( f ) and H∗b( f ) respectively. �

An example of a topological invariant defined in terms of the `1-semi-norm on
singular homology is the simplicial volume:

Definition (2.12). Let M be an oriented, closed, connected n-dimensional manifold
and let [M] ∈ Hn (M) be the image of the integral fundamental class of M under
the change of coefficients homomorphism. Then the simplicial volume of M is
defined as

‖M‖ :=
∥∥[M]

∥∥
1. �

In other words, the simplicial volume measures the complexity of the (real) fun-
damental class with respect to the `1-norm. An important aspect of this invariant
is its relation to Riemannian geometry and rigidity phenomena [5].

However, singular homology itself does not seem to be very well suited to com-
pute the simplicial volume. Both `1-homology and bounded cohomology provide
a systematic way of studying the simplicial volume (see Proposition (2.13) and
Theorem (3.6)). For example, bounded cohomology and `1-homology share the
advantage to vanish in a large number of cases.

Proposition (2.13). Let (X, A) be a pair of topological spaces. Then the homomorphism
H∗ (X, A) −→ H`1

∗ (X, A) induced by the inclusion C∗ (X, A) ⊂ C`1
∗ (X, A) is isometric

with respect to the semi-norms on H∗ (X, A) and H`1
∗ (X, A) induced by the `1-norm.

In particular, if H`1
n (X, A) = 0, then ‖α‖1 = 0 for all α ∈ Hn (X, A).

Proof. This follows from Proposition (2.7), because C∗ (X, A) ⊂ C`1
∗ (X, A) is a dense

subcomplex (with respect to ‖ · ‖1).

Remark (2.14). From Proposition (2.13) we can deduce that `1-homology of topo-
logical spaces is not always zero:

For example, it is well-known that the singular homology of oriented connected
closed hyperbolic (or, more general, negatively curved) manifolds contains classes
whose `1-semi-norm does not vanish [5, 8]. Hence, by Proposition (2.13), the image
in `1-homology of these classes cannot be zero. �

3 Duality

In this section, we investigate the relation induced by the evaluation map between
the dual of homology of a Banach chain complex and cohomology of the dual Ba-
nach cochain complex. In particular, we discuss Matsumoto and Morita’s duality

8
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principle (Theorem (3.4)) stating that the vanishing of (H∗(C))′ is equivalent to
the vanishing of H∗(C′) and the relation of the corresponding semi-norms (Theo-
rem (3.6)).

The key to lifting this duality principle to morphisms, e.g., to prove that H∗( f ) is
an isomorphism if and only H∗( f ′) is an isomorphism, is applying the duality prin-
ciple to mapping cones of morphisms of Banach chain complexes. These mapping
cones are introduced in Subsection 3.2 and the proof of Theorem (1.1) is presented
in Subsections 3.3 and 3.4.

3.1 Linking homology and cohomology

Obviously, evaluation links homology of a normed chain complex to cohomology
of its dual cochain complex:

Definition (3.1). Let C be a normed chain complex. Evaluation C′n ⊗ Cn −→ R
induces linear maps, the so-called Kronecker products,

〈 · , · 〉 : H∗(C′)⊗ H∗(C) −→ R,

〈 · , · 〉 : H∗(C′)⊗ H∗(C) −→ R. �

Remark (3.2). Let f : C −→ D be a morphism of normed chain complexes and
let n ∈ N. Then the induced homomorphisms Hn( f ) and Hn( f ′) are adjoint in the
sense that 〈

ϕ, Hn( f )(α)
〉

=
〈

Hn( f ′)(ϕ), α
〉

for all α ∈ Hn(C) and all ϕ ∈ Hn(D′). Analogously, Hn( f ) and Hn( f ′) are adjoint
with respect to 〈 · , · 〉. �

The algebraic dual of homology of a chain complex of vector spaces coincides
with the cohomology of the algebraic dual complex. However, the topological dual
fails to satisfy such a property:

Remark (3.3). There is no obvious duality isomorphism between homology and cohomol-
ogy of Banach chain complexes:

Let C be a Banach chain complex. Then we have the following commutative
diagram

H∗(C′) //

�� ''PPPPPPPPPP
homR(H∗(C), R)

H∗(C′) //
(

H∗(C)
)′,

OO

where the horizontal arrows are the homomorphisms induced by the Kronecker
products (i.e., they are induced by evaluation of elements in C′ on elements in C),
the left vertical arrow is the canonical projection and the right vertical arrow is the
composition (H∗(C))′ ↪→ homR(H∗(C), R) ↪→ homR(H∗(C), R) of inclusions.

The lower horizontal morphism, and hence also the diagonal morphism, is sur-
jective by the Hahn-Banach theorem. Moreover, Matsumoto and Morita showed
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that the diagonal morphism is injective if and only if H∗(C′) = H∗(C′) holds [10;
Theorem 2.3].

But this is obviously in general not the case. It is even wrong in the special
case C = C`1

∗ (X) for certain topological spaces X [18, 19]. Hence, there is no obvious
duality between `1-homology and bounded cohomology.

Even the lower horizontal arrow is in general not injective: The kernel of the
evaluation map

ker ∂′n+1 −→
(
ker ∂n/im ∂n+1

)′ = (
Hn(C)

)′
coincides with (⊥ im(∂′n))⊥, which is the weak*-closure of im ∂′n [16; Theorem 4.7].
Furthermore, the norm-closure im ∂′n and the weak*-closure (⊥ im(∂′n))⊥ coincide
if and only if im ∂n+1 is closed [16; Theorem 4.14]. Thus there is also no obvious
duality isomorphism between reduced `1-homology and reduced bounded coho-
mology. �

Surprisingly, there is still the following relation between homology and coho-
mology of Banach chain complexes, which has been discovered by Matsumoto and
Morita [10; Corollary 2.4] (and which was also studied by Grigorchuk [4]):

Theorem (3.4) (Duality principle). Let C be a Banach chain complex. Then H∗(C)
vanishes if and only if H∗(C′) vanishes.

Here, the “∗” carries the meaning “All of the Hn(C) are zero iff all the Hn(C′) are
zero.”

For the sake of completeness we provide a proof of this theorem. The proof is
based on the following fact, stating that taking dual Banach spaces is something
like an exact functor. (It is not really exact, because the categories involved are not
Abelian).

Lemma (3.5). Let f : U −→ V and g : V −→ W be two bounded operators of Banach
spaces satisfying g ◦ f = 0. Then the following two statements are equivalent:

1. The image of g is closed and im f = ker g.

2. The image of f ′ is closed and im(g′) = ker( f ′).

Proof. The various kernels and images are related as follows [16; Theorem 4.7 and
Theorem 4.12], where im(g′)

∗
denotes the weak*-closure of im(g′):

(im f )⊥ = ker( f ′),

(ker g)⊥ =
(⊥ im(g′)

)⊥ = im(g′)
∗
.

Suppose the image of g is closed and im f = ker g. Then also im f is closed.
Hence, im( f ′) and im(g′) are (weak*-)closed by the closed range theorem [16; The-
orem 4.14]. Therefore, we obtain ker( f ′) = im(g′)

∗
= im(g′).

Conversely, suppose the image of f ′ is closed and im(g′) = ker( f ′). Thus, also
im(g′) is closed. By the closed range theorem, im(g′) is even weak*-closed and
both im f and im g are closed. In particular,

(im f )⊥ = (ker g)⊥.
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Since im f is closed and im f ⊂ ker g, the Hahn-Banach theorem shows that im f =
ker g.

Proof (of Theorem (3.4)). If the (co)homology of a Banach (co)chain complex van-
ishes, then the images of all the (co)boundary operators are closed, because they are
kernels of bounded operators. Therefore, the theorem follows from Lemma (3.5).

Moreover, the semi-norms on homology and cohomology are intertwined in the
following way [5, 1; p. 17, Proposition F.2.2]:

Theorem (3.6) (Duality principle for semi-norms). Let C be a Banach chain complex
and let n ∈ N. Then

‖α‖ = sup
{ 1
‖ϕ‖∞

∣∣∣ ϕ ∈ Hn(C′) and 〈ϕ, α〉 = 1
}

holds for each α ∈ Hn(C). Here, sup ∅ := 0.

Proof. If α ∈ Hn(C) and ϕ ∈ Hn(C′), then∣∣〈ϕ, α〉
∣∣ ≤ ‖α‖ · ‖ϕ‖∞ .

This shows that ‖α‖ is at least as large as the supremum. Now suppose ‖α‖ 6= 0,
i.e., if c is a cycle representing α, then c 6∈ im ∂n+1. Thus, by the Hahn-Banach
theorem there exists a functional f : Cn −→ R satisfying

f |im ∂n+1
= 0, f (c) = 1, ‖ f ‖∞ ≤ 1/‖α‖.

In particular, f ∈ C′n is a cocycle. Let ϕ := [ f ] ∈ Hn(C′) be the corresponding
cohomology class. Then, by construction, 〈ϕ, α〉 = 1 and ‖ϕ‖∞ ≤ ‖ f ‖∞ ≤ 1/‖α‖.
Hence, ‖α‖ is at most the supremum.

The discussion in Remark (3.3) shows however that the semi-norm on H∗(C′) can
in general not be computed by the semi-norm on H∗(C). (Since it might happen
that the reduced homology H∗(C) is zero, but H∗(C′) is non-zero).

3.2 Mapping cones

Mapping cones of chain maps are a device translating questions about isomor-
phisms on homology into questions about the vanishing of homology groups (Lem-
ma (3.9)).

Definition (3.7). 1. Let f : (C, ∂C) −→ (D, ∂D) be a morphism of normed chain
complexes. Then the mapping cone of f , denoted by Cone( f ), is the normed
chain complex defined by

Cone( f )n := Cn−1 ⊕ Dn

11
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linked by the boundary operator that is given by the matrix

Cone( f )n(
−∂C 0

f ∂D

)
��

= Cn−1 ⊕

−∂C

��
f

��
99

99
99

99
Dn

∂D

��

Cone( f )n−1 = Cn−2 ⊕ Dn−1.

2. Dually, if f : (D, δD) −→ (C, δC) is a morphism of normed cochain complexes,
then the mapping cone of f , also denoted by Cone( f ), is the normed cochain
complex defined by

Cone( f )n := Dn+1 ⊕ Cn

and the coboundary operator determined by the matrix

Cone( f )n

(
−δD 0

f δC

)
��

= Dn+1 ⊕

−δD

��
f

��
99

99
99

99
9 Cn

δC

��

Cone( f )n+1 = Dn+2 ⊕ Cn+1.

In both cases, we equip the mapping cone with the direct sum of the norms, i.e.,
the norm given by ‖(x, y)‖ := ‖x‖+ ‖y‖. �

Clearly, if f is a morphism of Banach (co)chain complexes, then the mapping
cone Cone( f ) is also a Banach (co)chain complex.

Definition (3.8). If C is a normed chain complex, the normed chain complex ΣC
that is derived from C via (ΣC)n := Cn−1 is called the suspension of C. For a
normed cochain complex C, the suspension ΣC is defined by (ΣC)n := Cn−1. �

The main feature of mapping cones is being able to detect isomorphisms on ho-
mology in the following sense:

Lemma (3.9). 1. Let f : C −→ D be a morphism of normed chain complexes. Then
the induced map H∗( f ) : H∗(C) −→ H∗(D) is an isomorphism (of vector spaces) if
and only if all homology groups H∗(Cone( f )) vanish.

2. Dually, let f : D −→ C be a morphism of normed cochain complexes. Then the
induced map H∗( f ) : H∗(D) −→ H∗(C) is an isomorphism if and only if all coho-
mology groups H∗(Cone( f )) vanish.

Proof. The sequence (where the morphisms are given by the obvious inclusion and
projection) 0 −→ D −→ Cone( f ) −→ ΣC −→ 0 of normed chain complexes is
exact and hence gives rise to a long exact sequence in homology, whose connecting
morphism is easily seen to coincide with H∗( f ) [3; Proposition 0.6]:

. . . // Hn
(
Cone( f )

)
// Hn(ΣC) // Hn−1(D) // Hn−1

(
Cone( f )

)
// . . .

Hn−1(C)
Hn−1( f )

88qqqqqqqq

12
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This proves the first part. The second part can be shown in the same way, making
use of the long exact cohomology sequence corresponding to the short exact se-
quence 0 −→ C −→ Cone( f ) −→ Σ−1D −→ 0 of normed cochain complexes.

In order to understand the relation between the induced maps H∗( f ) and H∗( f ′)
it is therefore necessary to relate the mapping cone of f to the one of f ′.

Lemma (3.10). Let f : C −→ D be a morphism of normed chain complexes and f ′ : D′ −→
C′ the induced morphism between the dual complexes. Then there is a natural isomorphism

Cone( f )′ ∼= ΣCone( f ′)

of normed cochain complexes, relating the mapping cones of f and f ′. In particular,

H∗
(
Cone( f )′

) ∼= H∗
(
ΣCone( f ′)

)
.

Proof. For each n ∈ N, there is an isomorphism of normed vector spaces(
Cone( f )′

)n = (Cn−1 ⊕ Dn)′ −→ (Dn)′ ⊕ (Cn−1)′ = Cone( f ′)n−1

ϕ 7−→
(
d 7→ ϕ(0, d), c 7→ ϕ(c, 0)

)(
(c, d) 7→ ϕ(c) + ψ(d)

)
←− [ (ψ, ϕ).

By definition, the coboundary operator of Cone( f )′ is given by

(Cn−1 ⊕ Dn)′ −→(Cn ⊕ Dn+1)′

ϕ 7−→
(
(c, d) 7→ ϕ

(
−∂C(c), f (c) + ∂D(d)

))
=

(
(c, d) 7→

(
ϕ(−∂C(c), 0) + ϕ(0, f (c))

)
+ ϕ(0, ∂D(d))

)
which corresponds under the isomorphisms given above exactly to the cobound-
ary operator on ΣCone( f ′). Therefore, we obtain an isomorphism Cone( f )′ ∼=
ΣCone( f ′) of normed cochain complexes.

3.3 Transferring algebraic isomorphisms

Fusing the properties of mapping cones with the duality principle (Theorem (3.4))
yields a proof of the first part of Theorem (1.1):

Theorem (3.11). Let f : C −→ D be a morphism of Banach chain complexes. Then the
induced homomorphism H∗( f ) : H∗(C) −→ H∗(D) is an isomorphism of vector spaces if
and only if the induced homomorphism H∗( f ′) : H∗(D′) −→ H∗(C′) is an isomorphism
of vector spaces.

Proof. By Lemma (3.9), the map H∗( f ) is an isomorphism iff H∗(Cone( f )) = 0. In
view of the duality principle (Theorem (3.4)) and Lemma (3.10), this is equivalent
to

0 = H∗
(
Cone( f )′

)
= H∗

(
ΣCone( f ′)

)
= H∗−1(Cone( f ′)

)
.

(The duality principle is applicable, because the cone of a morphism of Banach
(co)chain complexes is a Banach (co)chain complex.) On the other hand, the co-
homlogy groups H∗−1(Cone( f ′)) are all zero if and only if f ′ : D′ −→ C′ is an
isomorphism (Lemma (3.9)).

13
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3.4 Transferring isometric isomorphisms

Similarly, combining the properties of mapping cones with the duality principle
for semi-norms (Theorem (3.6)) proves the second part of Theorem (1.1):

Theorem (3.12). Let f : C −→ D be a morphism of Banach chain complexes. If the
induced homomorphism H∗( f ′) : H∗(D′) −→ H∗(C′) is an isometric isomorphism, then
also H∗( f ) : H∗(C) −→ H∗(D) is an isometric isomorphism.

Proof. By Theorem (3.11), the map H∗( f ) is an isomorphism. That this isomor-
phism is isometric is a consequence of the duality principle for semi-norms (Theo-
rem (3.6)), namely:

Let n ∈ N and let α ∈ Hn(C). Using the duality principle for semi-norms twice
and the fact that H∗( f ′) is an isometric isomorphism, we obtain∥∥Hn( f )(α)

∥∥ = sup
{ 1
‖ψ‖∞

∣∣∣ ψ ∈ Hn(D′) and
〈
ψ, Hn( f )(α)

〉
= 1

}
= sup

{ 1
‖ψ‖∞

∣∣∣ ψ ∈ Hn(D′) and
〈

Hn( f ′)(ψ), α
〉

= 1
}

= sup
{ 1
‖Hn( f ′)(ψ)‖∞

∣∣∣ ψ ∈ Hn(D′) and
〈

Hn( f ′)(ψ), α
〉

= 1
}

= sup
{ 1
‖ϕ‖∞

∣∣∣ ϕ ∈ Hn(C′) and 〈ϕ, α〉 = 1
}

= ‖α‖,

as desired.

As already explained at the end of Subsection 3.1, one cannot expect that a state-
ment of the form “If H∗( f ) is an isometric isomorphism, then also H∗( f ′) is an
isometric isomorphism” holds.

4 Applications to `1-homology of spaces

Using the translation mechanisms from Section 3, we now derive statements con-
cerning isomorphisms in `1-homology of spaces:

Corollary (4.1). Let f : (X, A) −→ (Y, B) be a continuous map of pairs of topological
spaces.

1. The induced homomorphism H`1
∗ ( f ) : H`1

∗ (X, A) −→ H`1
∗ (Y, B) is an isomorphism

if and only if H∗b( f ) : H∗b(Y, B) −→ H∗b(X, A) is an isomorphism.

2. If H∗b( f ) : H∗b(Y, B) −→ H∗b(X, A) is an isometric isomorphism, then H`1
∗ ( f ) is

also an isometric isomorphism.

3. In particular, H`1
∗ (X, A) vanishes if and only if H∗b(X, A) vanishes.

14
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Proof. By definition, C∗b(X, A) = (C`1
∗ (X, A))′ as well as C∗b(Y, B) = (C`1

∗ (Y, B))′

and the cochain map C∗b( f ) : C∗b(Y, B) −→ C∗b(X, A) coincides with (C`1
∗ ( f ))′. Ap-

plying Theorem (3.11) and Theorem (3.12) to C`1
∗ ( f ) proves the Corollary.

Corollary (4.1) allows to transfer certain results from bounded cohomology to
`1-homology. For example, we obtain a new proof of the fact that `1-homology
depends only on the fundamental group and that amenable groups are a blind
spot of `1-homology (Corollary (4.3)):

Definition (4.2). A discrete group A is called amenable, if there is a left-invariant
mean on the set B(A, R) of bounded functions from A to R, i.e., if there is a linear
map m : B(A, R) −→ R satisfying

∀ f∈B(A,R) ∀a∈A m( f ) = m
(
b 7→ f (a−1 · b)

)
and

∀ f∈B(A,R) inf
{

f (a)
∣∣ a ∈ A

}
≤ m( f ) ≤ sup

{
f (a)

∣∣ a ∈ A
}

. �

All finite and all Abelian groups are amenable. Moreover, the class of amenable
groups is closed under taking subgroups and quotients. An example of a non-
amenable group is the free group Z ∗ Z. A detailed discussion of amenable groups
can be found in Paterson’s book [14].

Corollary (4.3) (Mapping theorem for `1-homology). The `1-homology of connected
countable CW-complexes depends only on the fundamental group. More generally: Let
f : X −→ Y be a continuous map of connected countable CW-complexes such that the
induced map π1( f ) : π1(X) −→ π1(Y) is surjective and has amenable kernel. Then the
induced homomorphism

H`1

∗ ( f ) : H`1

∗ (X) −→ H`1

∗ (Y)

is an isometric isomorphism.

Proof. It is a classical result in the theory of bounded cohomology that in this sit-
uation H∗b( f ) : H∗b(Y) −→ H∗b(X) is an isometric isomorphism [5, 9; p. 40, Theo-
rem 4.3]. Applying Corollary (4.1) completes the proof.

Bouarich gave the first proof that `1-homology only depends on the fundamental
group [2; Corollaire 6] based on Theorem (3.4), the fact that bounded cohomology
of simply connected spaces vanishes, and an `1-version of Brown’s theorem. More-
over, Park [13; Corollary 4.2] already claimed that Corollary (4.3) holds. However,
due to a gap in her argument, her proof is not complete. This issue is addressed in
Caveat (5.9) and Caveat (6.4).

Corollary (4.3) also gives a new proof of the following result of Bouarich [2;
Corollaire 5].

Corollary (4.4). Let p : E −→ B be a fibration of connected countable CW-complexes with
path-connected fibre F. If π1(F) is amenable, then the induced map H`1

∗ (p) : H`1
∗ (E) −→

H`1
∗ (B) is an isometric isomorphism.

15
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Proof. From the portion

. . . // π1(F) // π1(E)
π1(p)

// π1(B) // π0(F) = 0

of the long exact sequence associated to the fibration p, we obtain that π1(p) is
surjective and that ker π1(p), as homomorphic image of the amenable group π1(F),
must be amenable [14; Proposition 1.12 and 1.13]. Now the result follows from
Corollary (4.3).

Furthermore, the translation mechanisms of Section 3 enable us to show that
`1-homology of spaces indeed can be computed by certain projective resolutions
(Subsection 6.2), as already claimed by Park [13; Theorem 4.1].

5 Applications to `1-homology of groups

In this section, we introduce `1-homology and bounded cohomology of discrete
groups by means of (relative) homological algebra (Subsection 5.1) as considered
by Ivanov, Monod, and Park [9, 11, 13]. Concrete instances of this abstract frame-
work are provided by the standard resolutions (Subsection 5.2), which are the ob-
vious counterparts of their algebraic ancestors.

As in the case of `1-homology of topological spaces, we can apply Theorem (1.1)
in this setting to transfer results from bounded cohomology to `1-homology of dis-
crete groups (Subsection 5.3).

The background on (relative) homological algebra in the category of Banach
G-modules is collected in Appendix A.

5.1 `1-homology of discrete groups

Analogously to (co)homology of groups, `1-homology and bounded cohomology
of discrete groups can be defined by choosing the right class of projective and in-
jective resolutions, namely the ones provided by the framework of relative homo-
logical algebra.

Definition (5.1). Let G be a discrete group and let V be a Banach G-module.

1. Then `1-homology of G with coefficients in V is defined as

H`1

∗ (G; V) := H∗(CG),

where (C, ε : C0 → V) is any strong relatively projective G-resolution of V.
We abbreviate H`1

∗ (G) := H`1
∗ (G, R), where R is the trivial Banach G-module.

2. Dually, bounded cohomology of G with coefficients in V is defined as

H∗b(G; V) := H∗(CG),

16
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where (C, ε : V → C0) is any strong relatively injective G-resolution of V and
we write H∗b(G) := H∗b(G, R), where R is the trivial Banach G-module. �

As in classical homological algebra, these definitions do not depend on the choice
of the resolutions (Proposition (A.15)) and appropriate resolutions do always exist
(Proposition (5.6)).

Moreover, H`1
∗ ( · ; · ) and H∗b( · ; · ) are functorial in both variables: Let ϕ : H −→ G

be a homomorphism of discrete groups, let V be a Banach H-module, and let W be
a Banach G-module.

1. If f : V −→ ϕ∗W is a morphism of Banach H-modules, then there is a homo-
morphism

H`1

∗ (ϕ; f ) : H`1

∗ (H; V) −→ H`1

∗ (G; W).

2. Similarly, if f : ϕ∗W −→ V is a morphism of Banach H-modules, then there
is a homomorphism

H∗b(ϕ; f ) : H∗b(G; W) −→ H∗b(H; V).

Here ϕ∗W denotes the Banach H-module with underlying Banach space W and the
H-action given by h · w := ϕ(h) · w for all h ∈ H and all w ∈W.

Namely, let (C, ε) be a strong relatively projective H-resolution of V and let (D, η)
be a strong relatively projective G-resolution of W. Then (ϕ∗D, η) is a strong H-res-
olution of ϕ∗W and hence there is a morphism F : C −→ ϕ∗D of Banach H-chain
complexes extending f , which is (up to H-homotopy) unique (Proposition (A.11)).
This chain map induces a morphism F : CH −→ ϕ∗DH of Banach chain complexes.
Then

H∗(ϕ∗DH � DG) ◦ H∗(F) : H∗(CH) −→ H∗(DG)

is the desired homomorphism H`1
∗ (ϕ; f ). Since F is unique up to H-homotopy, the

composition H∗(ϕ∗DH � DG) ◦ H∗(F) is independent of the choice of F. Further-
more, one can show that the homomorphism H`1

∗ (ϕ; f ) defined in this way indeed
is independent of the chosen projective resolutions (using Proposition (A.15)).

Analogously, H∗b(ϕ; f ) is defined by looking at strong relatively injective resolu-
tions [9, 11; Section 3.7, Section 8].

5.2 Standard resolutions

The `1-completion of the ordinary bar resolution of a discrete group gives rise to
a strong relatively projective resolution of the trivial Banach module R. By taking
projective tensor products and mapping spaces of this resolution we obtain strong
relatively projective and strong relative injective resolutions for arbitrary discrete
groups and arbitrary coefficient modules (Proposition (5.6)).

Definition (5.2). Let G be a discrete group. The Banach bar resolution of G is the
`1-completion of the bar resolution of G, i.e., the Banach G-chain complex defined
as follows:

17
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1. For each n ∈ N let

C`1

n (G) :=
{

∑
g∈Gn+1

ag · g0 · [g1| . . . |gn]
∣∣∣∣ ∀g∈Gn+1 ag ∈ R and ∑

g∈Gn+1

|ag| < ∞
}

together with the norm
∥∥∑g∈Gn+1 ag · g0 · [g1| . . . |gn]

∥∥
1 := ∑g∈Gn+1 |ag| and

the G-action characterised by

h ·
(

g0 · [g1| . . . |gn]
)

:= (h · g0) · [g1| . . . |gn]

for all g ∈ Gn+1 and all h ∈ G.

2. The boundary operator is the G-morphism uniquely determined by

C`1

n (G) −→ C`1

n−1(G)
g0 · [g1| . . . |gn] 7−→ g0 · g1 · [g2| . . . |gn]

+
n−1

∑
j=1

(−1)j · g0 · [g1| . . . |gj−1|gj · gj+1|gj+2| . . . |gn]

+ (−1)n · g0 · [g1| . . . |gn−1].

3. Moreover, we define the augmentation ε : C`1

0 (G) −→ R by summation of the
coefficients. �

Definition (5.3). Let G be a discrete group and let V be a Banach G-module.

1. Let C`1
∗ (G; V) be the Banach G-chain complex given by

C`1

∗ (G; V) := C`1

∗ (G)⊗V.

2. Dually, we define the Banach G-cochain complex C∗b(G; V) by

C∗b(G; V) := B
(
C`1

∗ (G), V
)
.

(Details on the corresponding norms, G-actions and (co)boundary operators can be
found in Example (A.3) and Example (A.9)). �

Remark (5.4). Let G be a discrete group. Then clearly, C`1
∗ (G; R) = C`1

∗ (G). If V is
a Banach G-module, then the relation between ⊗ and · ′ (see Remark (A.4)) shows
that

C∗b(G; V ′) =
(
C`1

∗ (G; V)
)′.

Remark (5.5). For any discrete group G, the bijections

Gn+1 −→ Gn+1

g0 · [g1| . . . |gn] 7−→ (g−1
n , . . . , g−1

0 )

induce an isomorphism (C`1
∗ (G))′ −→ C∗b(G) of Banach G-cochain complexes,

where C∗b(G) is the strong relatively injective resolution of R defined by Ivanov [9;
Section 3.4].
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Clara Löh 5 Applications to `1-homology of groups

Proposition (5.6). Let G be a discrete group and let V be a Banach G-module.

1. Then C`1
∗ (G; V) together with the augmentation ε ⊗ idV is a strong relatively pro-

jective resolution of V.

2. Dually, C∗b(G; V) together with the augmentation B(ε, idV) is a strong relatively
injective resolution of V.

Here, ε : C`1

0 (G) −→ R is the augmentation introduced in Definition (5.2).

Proof. 1. Park showed that (C`1
∗ (G), ε) is a strong relatively projective resolution of

the trivial Banach G-module R [13; p. 596f]. In particular, there is a contracting
chain homotopy s of norm at most 1 of the concatenated chain complex C`1

∗ (G) � ε.
Therefore, s⊗ idV is a contracting chain homotopy of C`1

∗ (G; V) � (ε⊗ idV), which
also has norm at most 1. Hence, (C`1

∗ (G; V), ε ⊗ idV) is a strong resolution of the
Banach G-module R⊗V = V.

For each n ∈ N, the Banach G-module C`1
n (G; V) = C`1

n (G) ⊗ V is relatively
projective, because any mapping problem (in the sense of Definition (A.1)) of the
form

C`1
n (G; V)

α
��~~~

~
~

U π
// W //

σ
yy

0

is solved by the G-morphism given by

C`1

n (G; V) −→ U

g0 · [g1| . . . |gn]⊗ vg 7−→ g0 · σ ◦ α
(
1 · [g1| . . . |gn]⊗ (g−1

0 · vg)
)
.

2. Clearly, B(s, idV) is a contracting cochain homotopy of B(ε, idV) � B(C`1
∗ (G), V).

Furthermore, for each n ∈ N the Banach G-module Cn
b (G; V) = B(C`1

n (G), V) is
relatively injective, because any mapping problem (in the sense of Definition (A.1))
of the form

Cn
b (G; V)

0 // U
i //

α

OO

W
σ

ee

``B
B

B

can be solved by the G-morphism

W −→ Cn
b (G; V) = B

(
C`1

n (G), V
)

w 7−→
(

g0 · [g1| . . . |gn] 7→
(
α(g0 · σ(g−1

0 · w))
)
(g0 · [g1| . . . |gn])

)
If we were only interested in the case of V = W ′ for some Banach G-module W,

then we could just apply Proposition (A.12) to the first part.
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5.3 Isomorphisms in `1-homology of groups

Similarly to the results in Section 4, we can now derive statements concerning iso-
morphisms in `1-homology of discrete groups:

Corollary (5.7). Let ϕ : H −→ G be a homomorphism of discrete groups, let V be a Banach
H-module, let W be a Banach G-module and suppose there is a morphism f : V −→ ϕ∗W
of Banach H-modules.

1. Then the homomorphism H`1
∗ (ϕ; f ) : H`1

∗ (H; V) −→ H`1
∗ (G; W) is an isomorphism

if and only if H∗b(ϕ; f ′) : H∗b(G; W ′) −→ H∗b(H; V ′) is an isomorphism.

2. If H∗b(ϕ; f ′) is an isometric isomorphism, then so is H`1
∗ (ϕ; f ).

Here, the semi-norms on H`1
∗ ( · ; · ) and H∗b( · ; · ) are the ones induced by the

standard resolutions defined in the previous subsection (Definition (5.3), Proposi-
tion (5.6)). These semi-norms coincide with the canonical semi-norms in the sense
of Ivanov [9, 13, 11; Corollary 3.6.1, Corollary 2.3, Corollary 7.4.7].

Proof. Let F : C`1
∗ (H; V) −→ ϕ∗C`1

∗ (G; W) be an extension of f : V −→ ϕ∗W. Then
we obtain a commutative diagram of the form

(
ϕ∗C`1

∗ (G; W)H
)′ F ′ //

(A.16)

(
C`1
∗ (H; V)H

)′
(A.16)

ϕ∗C∗b(G; W ′)H
(5.4)

(
ϕ∗C`1

∗ (G; W)′
)H

F′ |
//
(
C`1
∗ (H; V)′

)H
(5.4)

C∗b(G; V ′)H .

The lower row is the restriction (to the subcomplex of invariants) of an extension
of f ′ : ϕ∗W ′ −→ V ′ to the H-resolution ϕ∗C∗b(G; W ′). Hence, the result follows by
applying Theorem (3.11) and Theorem (3.12) to F.

In particular: If G is a discrete group, then H`1
∗ (G; V) ∼= H`1

∗ (1; V) if and only if
H∗b(G; V ′) ∼= H∗b(1; V ′).

Additionally, Corollary (5.7) enables us to carry over many results on bounded
cohomology with coefficients to `1-homology. A small example of this procedure
is the following:

Corollary (5.8). Let G be a discrete group, let A ⊂ G be an amenable normal subgroup
and let V be a Banach G-module. Then the projection G −→ G/A induces an (isometric)
isomorphism

H`1

∗ (G; V) ∼= H`1

∗ (G/A; VA).

Proof. The corresponding homomorphism

H∗b(G � G/A; V ′A ↪→ V ′) : H∗b(G/A; V ′A) −→ H∗b(G; V ′)

is an isometric isomorphism [12; Theorem 1] (the case with R-coefficients was al-
ready treated by Ivanov [9; Section 3.8]). Since the inclusion V ′A ↪→ V ′ is the dual
of the projection V � VA (which follows from Proposition (A.16)), we can apply
Corollary (5.7).
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Caveat (5.9). Let G be a discrete group and let A ⊂ G be an amenable normal
subgroup.

Ivanov proved that the cochain complex C∗b(G/A) is a strong relatively injec-
tive G-resolution of the trivial G-module R [9; Theorem 3.8.4] by showing that the
G-morphisms C∗b(G/A) −→ C∗b(G) induced by the projection G −→ G/A are split
injective [9; Lemma 3.8.1 and Corollary 3.8.2].

Analogously, Park claimed that the G-morphisms C`1
n (G) −→ C`1

n (G/A) are split
surjective [13; Lemma 2.4 and Lemma 2.5] and concluded that the C`1

n (G/A) are rel-
atively projective G-modules. Unfortunately, Park’s proof [13; proof of Lemma 2.4]
contains an error: the A-invariant mean on B(A, R) provided by amenability of A
in general is not σ-additive.

In fact, C`1
n (G/A) in general is not a relatively projective G-module as the fol-

lowing example shows: Let G be an infinite amenable group (e.g., G = Z) and let
A := G. Then the G-action on G/A = 1 is trivial. However, since G is infinite, the
G-modules C`1

n (G) do not contain any non-zero G-invariant elements. Therefore,
any G-morphism of type C`1

n (G/A) −→ C`1
n (G) must be trivial. We now consider

the mapping problem

C`1
n (G/A) = R

id
��

?
||

C`1
n (G) π

// R // 0

with the G-morphism π given by g0 · [g1| . . . |gn] 7−→ 1, which obviously admits a
(non-equivariant) split of norm 1. The argument above shows that this mapping
problem cannot have a solution, and hence that C`1

n (G/A) cannot be a relatively
projective G-module.

This problem also affects several other results of Park, e.g., her proof of the fact
that `1-homology only depends on the fundamental group [13; Theorem 4.1] and
the equivalence theorem [13; Theorem 3.7 and 4.4]. �

6 `1-homology of spaces via projective resolutions

Similarly to singular homology and singular cohomology there are also versions of
`1-homology and bounded cohomology with twisted coefficients (Subsection 6.1).
By applying the translation techniques of Section 3 to an appropriate chain map

C`1

∗ (X; V) −→ C`1

∗
(
π1(X); V

)
π1(X),

we can deduce that `1-homology of a space with twisted coefficients coincides
with the `1-homology of the fundamental group with the corresponding coeffi-
cients (Theorem (6.3)). Hence, `1-homology of spaces admits also a description in
terms of projective resolutions.
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6.1 `1-homology with twisted coefficients

The same definition as for singular (co)homology gives rise to `1-homology and
bounded cohomology with twisted coefficients:

Definition (6.1). Let X be a connected topological space with universal covering X̃
and fundamental group G, and let V be a Banach G-module.

1. The `1-chain complex of X with twisted coefficients in V is defined as the
Banach chain complex of coinvariants

C`1

∗ (X; V) :=
(
C`1

∗ (X̃)⊗V
)

G.

2. The `1-homology of X with twisted coefficients in V, denoted by H`1
∗ (X; V),

is the homology of the Banach chain complex C`1
∗ (X; V).

3. The bounded cochain complex of X with twisted coefficients in V is defined
as the Banach cochain complex of invariants

C∗b(X; V) := B
(
C`1

∗ (X̃), V
)G.

4. Bounded cohomology of X with twisted coefficients in V is the cohomology
of the Banach cochain complex C∗b(X; V) and is denoted by H∗b(X; V).

(Details on the definition of the Banach G-(co)chain complexes C`1
∗ (X̃) ⊗ V and

B(C`1
∗ (X̃), V) can be found in Example (A.9)). �

The `1-chain complex and the bounded cochain complex of X (as defined in
Subsection 2.3) can be recovered from this definition by taking trivial coefficients:
Namely, as Park [13; proof of Theorem 4.1] stated, the `1-chain complex of X can
be viewed as the coinvariants of the `1-chain complex of X̃:

Proposition (6.2). If X is a connected topological space admitting a universal cover-
ing π : X̃ −→ X, then the morphism C`1

∗ (π) : C`1
∗ (X̃) −→ C`1

∗ (X) induces an isometric
isomorphism

ϕ : C`1

∗ (X̃)π1(X) −→ C`1

∗ (X)

of Banach chain complexes.

Therefore, C`1
∗ (X; R) = C`1

∗ (X), and we obtain from Proposition (A.16) that

C∗b(X; R) =
(
C`1

∗ (X̃)′
)π1(X) =

(
C`1

∗ (X̃)π1(X)
)′ = (

C`1

∗ (X)
)′ = C∗b(X).

Proof (of Proposition (6.2)). For brevity, we write G := π1(X) and W for the subcom-
plex span{g · c− c | c ∈ C`1

∗ (X̃), g ∈ G}.
Since C`1

∗ (π) is continuous (with norm 1) and since C`1
∗ (π) clearly vanishes on W,

it also vanishes on the closure W. In particular, it induces a morphism

ϕ : C`1

∗ (X̃)G −→ C`1

∗ (X).
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of Banach chain complexes with norm equal to 1 [15; Proposition 2.1.7].
We now construct an inverse to ϕ: To this end, for each τ ∈ map(∆∗, X) we

choose a π-lift τ̃ ∈ map(∆∗, X̃). Then

ψ : C`1

∗ (X) −→ C`1

∗ (X̃)

∑
j∈N

aj · τj 7−→ ∑
j∈N

aj · τ̃j + W

is a linear map, which satisfies ‖ψ‖ ≤ 1. (As we will see in the following paragraph,
ψ is the inverse of ϕ and thus is also compatible with the boundary operators).

Clearly, ϕ ◦ψ = id. Conversely, let c = ∑j∈N aj · σj + W ∈ C`1
∗ (X̃)G. For any j ∈ N

there exists a gj ∈ G such that (π ◦ σj)˜= gj · σj. Therefore, we obtain

(ψ ◦ ϕ)(c)− c =
(

∑
j∈N

aj · π̃ ◦ σj − ∑
j∈N

aj · σj

)
+ W

= ∑
j∈N

aj · (gj · σj − σj) + W.

Since the series ∑j∈N |aj| converges, the sum ∑j∈N aj · (gj · σj − σj) lies in the `1-clo-
sure of W, i.e., in W. This implies (ψ ◦ ϕ)(c) − c = 0 and hence ψ ◦ ϕ = id. This
proves the lemma.

6.2 Computing `1-homology with twisted coefficients via projective resolutions

Finally, we are able to identify `1-homology of topological spaces with `1-homology
of the associated fundamental groups:

Theorem (6.3). Let X be a countable connected CW-complex with fundamental group G
and let V be a Banach G-module.

1. There is a canonical isometric isomorphism

H`1

∗ (X; V) ∼= H∗
(
C`1

∗ (G; V)G
)
.

2. In particular: If C is a strong relatively projective resolution of V, then there is a
canonical isomorphism (degreewise isomorphism of semi-normed vector spaces)

H`1

∗ (X; V) ∼= H∗(CG) ∼= H`1

∗ (G; V).

3. If C is a strong relatively projective resolution of the trivial Banach G-module R, then
there is a canonical isomorphism (degreewise isomorphism of semi-normed vector
spaces)

H`1

∗ (X; V) ∼= H∗
(
(C⊗V)G

)
.

Therefore, the results of Subsection 5.3 are also valid for `1-homology with twist-
ed coefficients and hence provide generalisations of the results presented in Sec-
tion 4.
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Caveat (6.4). Ivanov proved the corresponding theorem for bounded cohomology
with R-coefficients [9; Theorem 4.1] by verifying that C∗b(X̃) is a strong relatively
injective resolution of the trivial Banach G-module R [9; Theorem 2.4].

The proof that the resolution C∗b(X̃) is strong relies heavily on the fact that certain
chain maps are split injective (see Lemma (B.4)). However, for the same reasons
as explained in Caveat (5.9), it is not possible to translate these arguments into
the language of `1-chain complexes. Hence, it seems impossible to prove that the
chain complex C`1

∗ (X̃) is a strong resolution. In particular, Park’s proof [13; proof of
Theorem 4.1] of Theorem (6.3) (with R-coefficients) is not complete. �

Using the techniques developed in Section 3, we can derive Theorem (6.3) from
the corresponding result in bounded cohomology (see Theorem (6.6), which is
proved in Appendix B).

Proof (of Theorem (6.3)). 1. In order to prove the first part of Theorem (6.3), we pro-
ceed as follows:

1. We establish a connection between C`1
∗ (X̃; V) and the strong relatively projec-

tive resolution C`1
∗ (G; V).

2. We show that the dual of this morphism when restricted to the invariants in-
duces an isometric isomorphism on the level of cohomology of the invariants
(Theorem (6.6)).

3. Finally, we apply Theorem (3.12) to translate this isometric isomorphism back
to `1-homology.

First step. Park [13; proof of Theorem 4.1] constructed the following map (“du-
ally” to Ivanov’s construction [9; proof of Theorem 4.1]):

Let F ⊂ X̃ be a (set-theoretic) fundamental domain of the π1(X)-action on X̃. In
the following, the vertices of the standard n-simplex ∆n are denoted by v0, . . . , vn.
For a singular simplex σ ∈ map(∆n, X̃) let g0(σ), . . . , gn(σ) ∈ G be the group ele-
ments uniquely characterised by

g0(σ)−1 · σ(v0) ∈ F

g1(σ)−1 · g0(σ)−1 · σ(v1) ∈ F
...

gn(σ)−1 · · · · · g1(σ)−1 · g0(σ)−1 · σ(vn) ∈ F.

Then the map η : C`1
∗ (X̃) −→ C`1

∗ (G) given by

C`1

n (X̃) −→ C`1

n (G)

σ 7−→ g0(σ) ·
[
g1(σ)

∣∣ · · · ∣∣ gn(σ)
]

is a morphism of Banach G-chain complexes. Hence,

ηV := η ⊗ idV : C`1

∗ (X̃; V) −→ C`1

∗ (G; V)
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is also a morphism of Banach G-chain complexes.
Let ηV : C`1

∗ (X̃; V)G −→ C`1
∗ (G; V)G denote the morphism of Banach chain com-

plexes induced by ηV . We now show that a different choice of fundamental do-
main F∗ ⊂ X̃ leads to a map chain homotopic to ηV :

Homological algebra shows that there is up to G-homotopy only one morphism
C`1
∗ (X̃) −→ C`1

∗ (G) (Proposition (A.11)), because C`1
∗ (X̃) is a Banach G-complex

consisting of relatively projective G-modules [13; p. 611] and C`1
∗ (G) is a strong

relatively projective resolution of R (Proposition (5.6)). But η and η∗, the map ob-
tained via F∗, are such morphisms and hence are G-homotopic. Therefore, also
η ⊗ idV and η∗V := η∗ ⊗ idV must be G-homotopic, which implies that the induced
maps ηV and η∗V must be homotopic. In particular,

H∗(ηV) : H∗
(
C`1

∗ (X̃; V)G
)
−→ H∗

(
C`1

∗ (G; V)G
)

does not depend on the choice of fundamental domain.
Second step. The dual of ηV coincides under the natural isomorphisms

(C`1

∗ (X̃; V))′ = C∗b(X̃; V ′) and (C`1

∗ (G; V))′ = C∗b(G; V ′)

of Banach G-modules (see Remark (A.4)) with the morphism ϑV′ : C∗b(G; V ′) −→
C∗b(X̃; V ′) of Banach G-cochain complexes given by

Cn
b (G; V ′) −→ Cn

b (X̃; V ′)

f 7−→
(
σ 7→ f (g0(σ), . . . , gn(σ))

)
.

(6.5)

In other words, the diagram

(
C`1
∗ (G; V)

)′
(A.4)

(ηV )′
//
(
C`1
∗ (X̃; V)

)′
(A.4)

C∗b(G; V ′)
ϑV′

// C∗b(X̃; V ′)

is commutative. Taking G-invariants of this diagram yields the following commu-
tative diagram of morphisms of Banach cochain complexes:

(
C`1
∗ (G; V)G

)′
(A.16)

ηV
′

//
(
C`1
∗ (X̃; V)G

)′
(A.16)(

C`1
∗ (G; V)′

)G

(A.4)

(ηV )′ |
//
(
C`1
∗ (X̃; V)′

)G

(A.4)

C∗b(G; V ′)G
ϑV′ |

// C∗b(X̃; V ′)G

The restriction ϑV′ | to the subcomplexes of G-invariants induces an isometric iso-
morphism on the level of cohomology (a proof of this theorem is given in Ap-
pendix B):
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Theorem (6.6). Let X be a countable connected CW-complex with fundamental group G
and let V be a Banach G-module.

1. The morphism ϑV′ : C∗b(G; V ′) −→ C∗b(X̃; V ′) of Banach G-cochain complexes (de-
fined in (6.5)) induces an isometric isomorphism

H∗b(X; V ′) = H∗
(
C∗b(X̃; V ′)G) ∼= H∗

(
C∗b(G; V ′)G)

.

Moreover, this isometric isomorphism does not depend on the choice of the funda-
mental domain F used in the definition of the gj(σ).

2. In particular: If C is a strong relatively injective resolution of V ′, then there is a
canonical isomorphism (degreewise isomorphism of semi-normed vector spaces)

H∗b(X; V) ∼= H∗(CG) ∼= H∗b(G; V ′).

Hence, also the top row of the diagram (i.e, ηV
′) must induce an isometric iso-

morphism on the level of cohomology.
Third step. Therefore, we can derive from Theorem (3.12) that

ηV : C`1

∗ (X; V) = C`1

∗ (X̃; V)G −→ C`1

∗ (G; V)G

induces a (canonical) isometric isomorphism on the level of homology. This proves
the first part.

2. Because C`1
∗ (G; V) is a strong relatively projective resolution of V (Proposi-

tion (5.6)), standard methods from homological algebra (Proposition (A.15)) pro-
vide us with a canonical isomorphism

H∗(CG) ∼= H∗
(
C`1

∗ (G; V)G
)
.

Thus the first part yields H`1
∗ (X; V) ∼= H∗(CG), as was to be shown.

3. If (C, η : C0 → V) is a strong relatively projective resolution of V, there ex-
ist (mutually G-homotopy inverse) G-chain homotopy equivalences ϕ : C � η '
C`1
∗ (G) � ε : ψ (Proposition (A.15)). But then ϕ⊗ idV and ψ⊗ idV clearly are (mutu-

ally G-homotopy inverse) G-chain homotopy equivalences

(C⊗V) � (η ⊗ idV) '
(
C`1

∗ (G)⊗V
)

� (ε⊗ idV) = C`1

∗ (G; V) � εV .

In particular, we obtain an isomorphism

H∗
(
(C⊗V)G

) ∼= H∗
(
C`1

∗ (G; V)G
)
,

which is in each degree an isomorphism of semi-normed vector spaces. Therefore,
we may deduce from the first part that

H`1

∗ (X; V) ∼= H∗
(
C`1

∗ (G; V)G
) ∼= H∗

(
(C⊗V)G

)
.
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A Homological algebra for Banach G-modules

Ivanov [9] adapted (relative) homological algebra in the sense of Hochschild [7] to
fit the needs of bounded cohomology of discrete groups. In this section, we intro-
duce the basic objects of this theory and investigate their compatibility with tak-
ing (topological) duals. The key concept are strong relatively injective resolutions,
which lead to the desirable fundamental lemma (Proposition (A.11)). Concrete ex-
amples of these concepts are studied in Subsection 5.2.

A more detailed account of the material collected in this section is, for example,
presented in the work of Ivanov [9] and Monod [11], as well as (for the non-Banach
case) in the book of Guichardet [6].

A.1 Banach G-modules

The atoms of the variant of (relative) homological algebra presented in this section
are Banach G-modules with a suitable notion of projectivity and injectivity.

Definition (A.1). Let G be a discrete group.

1. A Banach G-module is a Banach space V with a G-action G ×V −→ V such
that for each g ∈ G the linear map v 7→ g · v is an isometry.

2. A G-morphism is a bounded linear map between Banach G-modules that is
G-equivariant.

3. A G-morphism π : U −→ W is called relatively projective, if there is a (not
necessarily equivariant) linear map σ : W −→ U satisfying π ◦ σ = idW and
‖σ‖ ≤ 1.

4. A G-morphism i : U −→ W is called relatively injective, if there is a (not
necessarily equivariant) linear map σ : W −→ U satisfying σ ◦ i = idU and
‖σ‖ ≤ 1.

5. A Banach G-module V is called relatively projective, if for each relatively
projective G-morphism π : W −→ U and each G-morphism α : V −→W there
is a G-morphism β : V −→ U such that

π ◦ β = α and ‖β‖ ≤ α.

6. A Banach G-module V is called relatively injective, if for each relatively in-
jective G-morphism i : U −→ W and for each G-morphism α : U −→ V there
is a G-morphism β : W −→ V such that

β ◦ i = α and ‖β‖ ≤ α. �
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V

α

��

β

~~}
}

}
}

U π
// W

σ
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// 0
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0 // U
i //

α

OO

W
σ

ee

β
``A

A
A

A

Figure (A.2): Mapping problems for relatively projective and relatively injective
Banach G-modules respectively

The mapping problems arising in the definition of relatively projective and rela-
tively injective Banach G-modules are depicted in Figure (A.2).

Sometimes, “relatively injective” and “relatively projective” morphisms are also
called “admissible monomorphisms” and “admissible epimorphisms” respectively.

The most basic example of a Banach G-module with non-trivial group action
is `1(G), the set of all `1-functions G −→ R with the G-action given by shifting the
argument. Obviously, any Banach G-module is a module over `1(G). However, the
homological algebra we use does not coincide with the homological algebra in the
category of `1(G)-modules. Even worse, the category of Banach G-modules is (like
the category of Banach spaces) not Abelian.

Example (A.3). Let G be a discrete group and let U and V be two Banach G-mod-
ules.

1. The projective tensor product U ⊗V is the Banach G-module whose under-
lying Banach space is the projective tensor product U ⊗ V of Banach spaces,
i.e., the completion of the tensor product U ⊗ V of R-vector spaces with re-
spect to the norm

∀c∈U⊗V ‖c‖ := inf
{

∑
j
‖uj‖ · ‖vj‖

∣∣∣∣ ∑
j

uj ⊗ vj represents c ∈ U ⊗V
}

.

The G-action on U ⊗V is the G-action uniquely determined by

∀g∈G ∀u∈U ∀v∈V g · (u⊗ v) := (g · u)⊗ (g · v).

2. The Banach space B(U, V) of all bounded linear functions from U to V (with
the operator norm) is a Banach G-module with respect to the G-action

G× B(U, V) −→ B(U, V)

(g, f ) 7−→
(
u 7→ g · ( f (g−1 · u))

)
.

In particular, U′ is a Banach G-module (where R is regarded as the trivial
Banach G-module). �

The functors ⊗ and B are adjoint in the following sense:
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V ′
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Figure (A.6): Diagrams occurring in the proof of Proposition (A.5)

Remark (A.4). Let G be a discrete group and let U, V, and W be Banach G-modules.
Then

B(U ⊗V, W) −→ B
(
U, B(V, W)

)
f 7−→

(
u 7→ (v 7→ f (u⊗ v))

)(
u⊗ v 7→ f (u)(v)

)
←− [ f

is an isometric isomorphism of Banach G-modules.

Taking duals transforms relatively projective modules into relatively injective
modules:

Proposition (A.5). Let V be a relatively projective Banach G-module. Then its dual V ′ is
a relatively injective Banach G-module.

Proof. In order to show that V ′ is a relatively injective Banach G-module we have to
find a G-morphism β : W −→ V ′ fitting into the diagram Figure (A.6)(a) whenever
α : U −→ V ′ is a G-morphism and i : U −→ W is a G-morphism admitting a (not
necessarily equivariant) split σ : W −→ U satisfying σ ◦ i = idU and ‖σ‖ ≤ 1.

There is an isometric embedding [15; 2.3.7]

jV : V −→ V ′′

v 7−→
(

f 7→ f (v)
)
,

which is G-equivariant, of V into its double dual V ′′. (However, this embedding
is not surjective in general). Taking the dual of the solid part of diagram Fig-
ure (A.6)(a) thus gives rise to Figure (A.6)(b). Clearly, i′ ◦ σ′ = idW ′ and ‖σ′‖ ≤
‖σ‖ ≤ 1. Since V is relatively projective, we find a G-morphism γ : V −→ W ′ such
that i′ ◦ γ = α′ ◦ jV and ‖γ‖ ≤ ‖α ◦ jV‖ ≤ ‖α‖.

Dualising a second time thus yields the commutative diagram Figure (A.6)(c).
Unfolding the various definitions shows that (α′ ◦ jV)′ ◦ jU = α. Hence, β := γ′ ◦ jW
is a G-morphism with β ◦ i = α and ‖β‖ ≤ ‖γ′‖ · 1 ≤ ‖α‖.
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Since not all Banach spaces are reflexive, it seems unlikely that the converse of
this proposition holds.

A.2 Banach G-chain complexes

In order to get the machinery of homological algebra running, we of course need a
suitable universe of chain complexes.

Definition (A.7). Let G be a discrete group.

1. A Banach G-(co)chain complex is a (co)chain complex of Banach G-modules,
whose (co)boundary operators all are G-morphisms (in the sense of Defini-
tion (A.1)).

2. A morphism of Banach G-(co)chain complexes is a chain map of Banach
G-(co)chain complexes consisting of G-morphisms.

3. Two morphisms of Banach G-(co)chain complexes are G-homotopic, if there
exists a (co)chain homotopy between them that consists of G-morphisms. �

Fundamental examples of Banach G-(co)chain complexes are the standard reso-
lutions (see Subsection 5.2) and the ones stemming from geometry:

Example (A.8). If a discrete group G acts continuously on a topological space X,
then the induced action of G on C`1

∗ (X) and C∗b(X) turns these complexes into Ba-
nach G-(co)chain complexes. �

Of course, the essential operations ⊗ and B also have a pendant on the level of
G-chain complexes:

Example (A.9). Let G be a discrete group. Let (C, ∂) be a Banach G-chain complex
and let V be a Banach G-module.

1. The projective tensor product C⊗V is the Banach G-chain complex given by

(C⊗V)n := Cn ⊗V

with the boundary operator ∂⊗ idV .

2. The Banach G-cochain complex B(C, V) is defined by

B(C, V)n := B(Cn, V),

equipped with the coboundary operator

B(C, V)n −→ B(C, V)n+1

f 7−→
(
c 7→ f (∂n+1(c))

)
.

(The Banach G-module structure on Cn ⊗ V and B(Cn, V) is introduced in Exam-
ple (A.3)). �

Applying these constructions to the `1-chain complexes of universal covering
spaces gives rise to `1-chain complexes with twisted coefficients and bounded co-
chain complexes with twisted coefficients (Definition (6.1)).
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A.3 Relatively injective and relatively projective resolutions

The key concept of homological algebra is the adequate notion of projective and
injective resolutions leading to the fundamental lemma of homological algebra
(Proposition (A.11)). In our case, the special form of the mapping problems oc-
curring in the definition of relatively projective G-modules forces us to consider
so-called “strong” resolutions.

Definition (A.10). Let G be a discrete group and let V be a Banach G-module.

1. Let (C, ∂) be a normed chain complex of Banach G-modules. An augmenta-
tion of C with respect to V is a G-morphism ε : C0 −→ V satisfying ∂1 ◦ ε = 0.
If ε is an augmentation of C, then the concatenation of C and ε : C0 −→ V is a
Banach G-chain complex, which will be denoted by C � ε.

2. Dually, an augmentation of a Banach G-cochain complex (C, δ) is a G-mor-
phism ε : C0 −→ V satisfying ε ◦ δ1 = 0. The concatenation of ε : V −→ C0
and C is then a Banach G-cochain complex, which will be denoted by ε � C.

3. A (left) resolution of V is a Banach G-chain complex C together with an
augmentation ε : C0 −→ V such that H∗(C � ε) = 0.

4. A (right) resolution of V is Banach G-cochain complex C together with an
augmentation ε : V −→ C0 such that H∗(ε � C) = 0.

5. A resolution of V by Banach G-modules is called strong, if the concatenated
Banach G-(co)chain complex admits a (not necessarily equivariant) chain con-
traction of norm at most 1.

6. A resolution of V is called relatively projective (or relatively injective) if
it consists of relatively projective Banach G-modules (or relatively injective
Banach G-modules respectively). �

Now the fundamental lemma reads as follows:

Proposition (A.11). Let G be a discrete group, let f : V −→W be a morphism of Banach
G-modules.

1. If (C, ε : C0 → V) is an augmented Banach G-chain complex consisting of relatively
projective G-modules and (D, η : D0 → W) is a strong resolution of W, then f can
be extended to a morphism C � ε −→ D � ε of Banach G-chain complexes. Moreover,
this morphism is unique up to G-homotopy.

2. Dually, if (D, η : W → D0) is an augmented Banach G-cochain complex consisting
of relatively injective G-modules and if (C, ε : V → C0) is a strong resolution of V,
then f can be extended to a morphism ε � C −→ η � D of Banach G-cochain complexes
and this morphism is unique up to G-homotopy.
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Proof. This can be proved using standard techniques from homological algebra [6,
11; Proposition 2.2, Lemma 7.2.4]. For example, in order to find an extension of f
in the first part, we inductively solve mapping problems of the form

Cn+1
fn+1

zzu
u

u
u

fn◦∂C
n+1

��

Dn+1
∂D

n+1

// im ∂D
n+1

(where f−1 := f ). This is a mapping problem in the sense of Definition (A.1), be-
cause im ∂D

n+1 = ker ∂D
n is closed – and hence indeed a Banach G-module – and

any contracting homotopy of D provides a (non-equivariant) split of the G-mor-
phism ∂D

n+1 : Dn+1 −→ im ∂D
n+1 of norm at most 1. Therefore, the relative projectiv-

ity of Cn+1 ensures the existence of a solution fn+1.

Proposition (A.5) extends to resolutions and thus dualising transforms (strong)
relatively projective resolutions into (strong) relatively injective ones:

Proposition (A.12). Let G be a discrete group and let (C, ε : C0 → V) be a relatively
projective resolution of the Banach G-module V. Then its dual (C′, ε′ : V ′ → C′0) is a
relatively injective resolution of the Banach G-module V ′.

If the resolution (C, ε) is strong, then so is (C′, ε′).

Proof. By Proposition (A.5) the Banach G-cochain complex C′ consists of relatively
injective Banach G-modules. Since (C, ε) is a resolution, H∗(C � ε) = 0. Because the
Banach G-cochain complexes (C � ε)′ and ε′ � C′ are isomorphic, we obtain H∗(ε′ �

C′) = 0 from the duality principle (Theorem (3.4)). Hence, (C′, ε′) is a resolution
of V ′.

If (C, ε) is strong, then the dual of a chain contraction of C � ε with norm at most 1
is a cochain contraction of the dual ε′ � C′ with norm at most 1, i.e., (C′, ε′) is a strong
resolution of V ′.

A.4 Invariants and coinvariants

The last missing piece en route to (co)homology of groups in the setting of Banach
G-modules is an appropriate definition of invariants and coinvariants.

Definition (A.13). Let G be a group and let V be a Banach G-module. The set of
invariants of V is defined by

VG := {v ∈ V | ∀g∈G g · v = v}.

The set of coinvariants of V is the quotient

VG := V/W,

where W ⊂ V is the subspace generated by the set {g · v− v | v ∈ V, g ∈ G}. �

32
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Clearly, if V is a Banach G-module, then VG is a Banach space with respect to
the restricted norm and VG is a Banach space with respect to the quotient norm [15;
Proposition 2.1.5] – because a closed subspace is quotiened out. However, notice
that the space W itself used in the previous definition in general is not closed.

Any G-morphism f : V −→W induces a bounded linear operator f : VG −→WG
satisfying f ◦ (V � VG) = (W � WG) ◦ f [15; Proposition 2.1.7]. In particular, we
can apply this to Banach G-(co)chain complexes:

Definition (A.14). Let G be a discrete group.

1. If (C, δ) is a Banach G-cochain complex, then CG is the Banach cochain com-
plex given by (CG)n := (Cn)G with the coboundary operator δ|CG .

2. If (C, ∂) is Banach G-chain complex, then CG is the Banach chain complex
given by (CG)n := (Cn)G and the boundary operator induced by ∂. �

The following consequence of the fundamental lemma (Proposition (A.11)) lies at
the heart of the definition of group (co)homology in this Banach-flavoured setting
(see Definition (5.1)).

Proposition (A.15). Let G be a discrete group and let V be a Banach G-module.

1. If (C, ε : C0 → V) and (D, η : D0 → V) are two strong relatively projective (left)
resolutions of V, then there is a canonical isomorphism (degreewise isomorphism of
semi-normed vector spaces)

H∗(CG) ∼= H∗(DG).

2. Dually, if (C, ε : V → C0) and (D, η : V → D0) are two strong relatively injective
(right) resolutions of V, then there is a canonical isomorphism (degreewise isomor-
phism of semi-normed vector spaces)

H∗(CG) ∼= H∗(DG).

However, the canonical isomorphisms mentioned in the proposition need not be
isometric.

Proof. Clearly, any morphism ϕ : C � ε −→ D � ε of Banach G-chain complexes in-
duces a morphism CG −→ DG of Banach chain complexes. Similarly, G-homotopies
descend to (bounded) homotopies on the coinvariants. Hence, Proposition (A.11)
applied to the G-morphism id : V −→ V proves the first part.

In the same way the second part can be derived from Proposition (A.11).

Proposition (A.16). For all Banach G-modules V the map

ϕ : (VG)′ −→ (V ′)G

f 7−→ f ◦ π

is a natural, where π : V −→ VG is the canonical projection.
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Proof. It is not hard to see that ϕ is well-defined and ‖ϕ‖ ≤ 1. Conversely, we
consider the map

ψ : (V ′)G −→ (VG)′

f 7−→ f ,

where f : VG −→ R is the unique continuous functional satisfying f ◦π = f . More-
over, ‖ f ‖∞ ≤ ‖ f ‖∞. Again, it is not difficult to check that ψ is well-defined and
that ‖ψ‖ ≤ 1.

By construction, ϕ ◦ ψ = id and ψ ◦ ϕ = id, which implies that ϕ must be an
isometric isomorphism.

B Bounded cohomology with twisted coefficients

Ivanov proved that bounded cohomology of topological spaces (with R-coeffi-
cients) can be computed in terms of strong relatively injective resolutions of R [9;
Theorem 4.1]. This section is devoted to the following generalisation of Ivanov’s
result:

Theorem (B.1). Let X be a countable connected CW-complex with fundamental group G
and let V be a Banach G-module.

1. The morphism ϑV′ : C∗b(G; V ′) −→ C∗b(X̃; V ′) of Banach G-cochain complexes (de-
fined in (6.5)) induces an isometric isomorphism

H∗b(X; V ′) = H∗
(
C∗b(X̃; V ′)G) ∼= H∗

(
C∗b(G; V ′)G)

.

Moreover, this isometric isomorphism does not depend on the choice of fundamental
domain used in the definition of the ϑV′ .

2. In particular: If C is a strong relatively injective resolution of V ′, then there is a
canonical isomorphism (degreewise isomorphism of semi-normed vector spaces)

H∗b(X; V) ∼= H∗(CG) ∼= H∗b(G; V ′).

The proof of the first part relies on the following observation:

Lemma (B.2). Let X be a countable connected CW-complex with fundamental group G
and let V be a Banach G-module. The cochain complex C∗b(X̃; V ′) = B(C`1

∗ (X̃), V ′) to-
gether with the augmentation εX : V ′ −→ C0

b(X̃; V ′) given by the obvious inclusion is an
approximate strong relatively injective resolution of V ′.
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Definition (B.3). Let G be a discrete group.

1. If C is a Banach G-cochain complex and n ∈ N, we define the truncated
cochain complex C|n to be the Banach G-cochain complex derived from C by
keeping only the modules (and the corresponding coboundary operators) in
degree 0, . . . , n and defining all modules in higher degrees to be 0.

2. An augmented Banach G-cochain complex (C, ε : V → C0) is an approximate
strong resolution of the Banach G-module V, if for any n ∈ N, the trun-
cated complex C|n admits a partial contracting cochain homotopy, i.e., linear
maps (Kj : Cj → Cj−1)j∈{1,...,n} and K0 : C0 → V of norm at most 1 satisfying

∀j∈{1,...,n−1} δj−1 ◦ Kj + Kj+1 ◦ δj = idCj

as well as K0 ◦ ε = idV . �

The proof of Lemma (B.2) is a straightforward generalisation of Ivanov’s proof
of the fact that C∗b(X̃) is a strong relatively injective π1(X)-resolution of R, one of
the main steps being the following splitting:

Lemma (B.4). Let X and Y be simply connected spaces, let p : X −→ Y be a principal
bundle whose structure group is an Abelian topological group G, and let V be a Banach
space. Then for each n ∈ N there is a partial split of C∗b(p; V ′)|n, i.e., a cochain map

A|n : C∗b(X; V ′)|n −→ C∗b(Y; V ′)|n

of truncated complexes satisfying for all j ∈ {0, . . . , n}

A|n j ◦ Cj
b(p; V ′) = id and ‖A|n j‖ ≤ 1.

Proof (of Lemma (B.4)). This can be shown in exactly the same way as the corre-
sponding statement for R-coefficients [9; Theorem 2.2]:

Let n ∈ N. Then the group Gn := map(∆n, G) is Abelian and hence amenable
(when regarded as discrete group). Therefore, there exists a Gn-equivariant mean

m : B(Gn, V ′) −→ V ′,

where V ′ is endowed with the trivial Gn-action. Such a mean can, for example, be
constructed via

m : B(Gn, V ′) −→ V ′

f 7−→
(

v 7→ mR
(

g 7→ ( f (g))(v)
))

,

where mR : B(Gn, R) −→ R is a Gn-invariant mean provided by amenability of Gn.
Now the same construction as in Ivanov’s proof [9; proof of Theorem 2.2] gives

rise to the partial split A|n. (Perhaps there is no total split C∗b(X; V ′) −→ C∗b(Y; V ′),
because – unlike in the case with R-coeffcients [9; p. 1094] – the theorem of Banach-
Alaoglu cannot be applied directly to the space B(B(Gn, V ′), V ′). But for our appli-
cations the partial splits suffice.)
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Using Lemma (B.4), we can construct the required partial contracting homo-
topies of the bounded chain complex with twisted coefficients as in Ivanov’s proof
for R-coefficients:

Proof (of Lemma (B.2)). Since X̃ is a simply connected countable CW-complex, there
is a sequence

. . . pn
// Xn

pn−1
// . . . p2

// X2
p1

// X1 := X̃

of principal bundles (pn)n∈N>0 with Abelian structure groups such that

∀j∈{0,...,n} πj(Xn) = 0 and ∀j∈N>n πj(Xn) = πj(X̃)

holds for all n ∈ N>0 [9; p. 1096]. In particular, all the Xn are simply connected.
Let n ∈ N. Since Xn is n-connected, one can explicitly construct a partial chain

contraction

R
L0 // C0 (Xn)

L1 // . . . Ln // Cn (Xn)

with ‖Lj‖ ≤ 1 for all j ∈ {0, . . . , n} [9; p. 1097]. Because L is bounded, it can be
extended to a partial cochain contraction

R
L0 // C`1

0 (Xn)
L1 // . . . Ln // C`1

n (Xn),

which also satisfies ‖Lj‖ ≤ 1. But then the induced maps

V ′ = B(R, V ′) C0
b(Xn; V ′)

B(L0,idV′ )oo . . .B(L1,idV′ )oo Cn
b (Xn; V ′)

B(Ln ,idV′ )oo

clearly form a partial cochain contraction with norm at most 1. Using the splits
from Lemma (B.4), we can transfer this partial contracting cochain map of Xn to
one of X: By Lemma (B.4), for j ∈ {1, . . . , n} we find partial splits

A(j)|n : C∗b(Xj+1; V ′)|n −→ C∗b(Xj; V ′)|n

of C∗b(pj)|n. We now consider the maps

V ′ C0
b(X̃; V ′)

K0oo . . .K1oo Cn
b (X̃; V ′)

Knoo

defined by

Kj := A(1)|n ◦ · · · ◦ A(n− 1)|n ◦ B(Lj, idV′ ) ◦ Cj
b(pn−1; V ′) ◦ · · · ◦ Cj

b(p1; V ′)

for all j ∈ {0, . . . , n}. By construction, ‖Kj‖ ≤ 1 and K0, . . . , Kn form a partial
cochain contraction [9; p. 1096].

It remains to show that the Banach G-modules Cn
b (X̃; V ′) are relatively injective:

Let F ⊂ X̃ be a fundamental domain for the G-action on X̃. For n ∈ N, we write
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Fn ⊂ C`1
n (X̃) for the Banach subspace generated by all singular simplices mapping

the zeroth vertex of ∆n into F. Then

C`1

n (X̃) = `1(G)⊗ Fn

(as Banach G-modules). In particular, we obtain (cf. Remark (A.4))

Cn
b (X̃; V ′) = B

(
C`1

n (X̃), V ′
)

= B
(
`1(G)⊗ Fn, V ′

)
= B

(
`1(G), B(Fn, V ′)

)
.

Since the Banach G-module B(`1(G), B(Fn, V ′)) is relatively injective [11; Proposi-
tion 4.4.1], it follows that Cn

b (X̃; V ′) is relatively injective.
Hence, the cochain complex (C∗b(X̃; V ′), εX) is an approximate strong relatively

injective resolution of V ′.

Theorem (B.1) can now be deduced from Lemma (B.2) by means of homological
algebra:

Proof (of Theorem (6.6)). 1. The pair (C∗b(X̃; V ′), εX : V ′ → C0
b(X̃; V ′)) is an approxi-

mate strong relatively injective resolution of V ′ by Lemma (B.2).
The morphism ϑV′ : C∗b(G; V ′) −→ C∗b(X̃; V ′) of Banach G-cochain complexes

clearly satisfies (where ε : C`1

0 (G) −→ R is the augmentation of Definition (5.2))

εX ◦ θ0
V′ = B(ε, idV) ◦ idV′ .

I.e., idV′ � ϑV′ : B(ε, idV) � C∗b(G; V ′) −→ εX � C∗b(X̃; V ′) is a morphism of Banach
G-cochain complexes.

The inductive proof of Proposition (A.11) depends only on finite initial parts of
the resolutions in question. Since (C∗b(G; V ′), B(ε, idV)) is a strong relatively in-
jective resolution (Proposition (5.6)), it follows that ϑV′ is the (up to G-homotopy)
unique morphism of Banach G-cochain complexes from C∗b(G; V ′) to C∗b(X̃; V ′) and
that ϑV′ admits a G-homotopy inverse.

In particular, the restriction of ϑV′ to the G-invariants induces an isomorphism

H∗
(
C∗b(X̃; V ′)

) ∼= H∗
(
C∗b(G; V ′)G)

,

which is independent of the choice of fundamental domain used in the definition
of ϑV′ .

Furthermore, this isomorphism is even isometric: By construction, ‖ϑV′‖ ≤ 1.
Conversely, it is known that the semi-norm on H∗b(G; V ′) induced by the norm on
the standard resolution C∗b(G; V ′) is “minimal” [11; Corollary 7.4.7, Theorem 7.3.1].
Therefore, the isomorphism on cohomology induced by ϑV′ must be isometric.

2. Because C∗b(G; V ′) is a strong relatively injective resolution (Proposition (5.6)),
standard methods from homological algebra (Proposition (A.15)) show that there
is a canonical isomorphism H∗(CG) ∼= H∗(C∗b(G; V ′)G).
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