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The name of the game

?

Problem
Describe the set of all continuous maps between two given manifolds
of the same dimension!

Problem
Describe the set of all possible mapping degrees for maps
between two given manifolds of the same dimension!
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The name of the game

functorial semi-norms degree theorems

Problem A (Gromov)

Show that “most interesting” even-dimensional manifolds cannot be
dominated by a product of surfaces!

Problem B (Gromov)

Are all functorial semi-norms on singular homology trivial
on all simply connected spaces?

. . . Both problems can be solved by suitable translations into algebra.
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Overview

Functorial semi-norms −→ degree theorems

Degree theorms −→ functorial semi-norms

Solving Problem A: Negatively curved groups

Solving Problem B: Inflexible manifolds
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Functorial semi-norms in singular homology

Definition (functorial semi-norm in homology; Gromov)

Let d ∈ N. A functorial semi-norm on Hd( · ;R)

I consists of a choice of a (possibly infinite) semi-norm | · | on Hd(X;R)
for all topological spaces X that is compatible with continuous maps:

I For every continuous map f : X −→ Y and all classes α ∈ Hd(X;R) we
have ∣∣Hd(f ;R)(α)

∣∣ ≤ |α|.
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Why are functorial semi-norms interesting?

Proposition (functorial semi-norms −→ degree theorems)

Let d ∈ N, and let | · | be a functorial semi-norm on Hd( · ;R).
I If f : M −→ N is a map between oriented closed connected

d-manifolds, then

|deg f | ·
∣∣[N]R

∣∣ =
∣∣Hd(f ;R)([M]R)

∣∣ ≤ ∣∣[M]R
∣∣.

I In particular: In this situation, if |[N]R| 6= 0, then

|deg f | ≤
∣∣[M]R

∣∣∣∣[N]R
∣∣ .
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The `1-semi-norm

Example (Gromov)

Let d ∈ N.
I If c =

∑
σ∈Sd(X) aσ · σ is a singular chain, then |c|1 :=

∑
σ∈Sd(X) |aσ|.

I If α ∈ Hd(X;R), then the `1-semi-norm of α is defined by

‖α‖1 := inf
{
|c|1

∣∣ c ∈ Cd(X;R) is a cycle representing α
}
∈ R≥0.

Definition (simplicial volume; Gromov)

The simplicial volume of an oriented closed connected M is defined by

‖M‖ :=
∥∥[M]R

∥∥
1.

By the above, non-vanishing results for the simplicial volume
lead to degree theorems.
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The `1-semi-norm, examples

Let d ∈ N>0.
I Spheres.

‖Sd‖ = 0.

1· 1
2 ·

1
3 · · · ·

I Tori. Similarly, ‖(S1)d‖ = 0.
I Simply connected spaces. If X is simply connected and α ∈ Hd(X;R),

then (!)
‖α‖1 = 0.

More generally, the same holds also for spaces with amenable
fundamental group. [Gromov]
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The `1-semi-norm, examples

I Hyperbolic manifolds. If M is an oriented closed connected hyperbolic
d-manifold, then

‖M‖ =
vol M

vd
> 0,

where vd is the supremum of volumes of geodesic d-simplices in
hyperbolic d-space. [Gromov, Thurston]

In particular: Degree theorems for maps to hyperbolic manifolds.

I Negative curvature. If M is an oriented closed connected Riemannian
manifold of negative sectional curvature, then

‖M‖ > 0.

[Inoue, Yano]
I Compact locally symmetric spaces of non-compact type.

[Lafont, Schmidt]
I Generalisations to the non-compact case [Löh, Sauer]
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The surface semi-norm

Example (Gromov)

If α ∈ H2d(X;R), then the surface semi-norm of α is

‖α‖S := inf
{ k∑

j=1

|aj| · |χ(Sj)|
∣∣∣∣ k ∈ N, a1, ... , ak ∈ R \ {0},

S1, ... , Sk are products of

oriented closed connected surfaces,

f1 : S1 → X, ... , fk : Sk → X continuous

with
k∑

j=1

aj · Hd(fj;R)[Sj]R = α

}
.
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Functorial semi-norms on manifolds

Definition (functorial semi-norm on manifolds)

Let d ∈ N, let Mfdd be the class of oriented closed connected d-manifolds,
and let S ⊂ Mfdd.

I A functorial semi-norm on S is a map v : S −→ R≥0 ∪ {∞} such that:
I For all continuous maps f : M −→ N with M, N ∈ S we have

|deg f | · v(N) ≤ v(M).
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Functorial semi-norms out of mapping degrees

Proposition (Crowley, Löh)

Let d ∈ N, and let v : S −→ R≥0 ∪ {∞} be a functorial semi-norm on a
class S ⊂ Mfdd.

For a space X and α ∈ Hd(X;R) we define

|α|v := inf
{ k∑

j=1

|aj| · v(Mj)

∣∣∣∣ k ∈ N, aj ∈ R \ {0}, Mj ∈ S,

fj : Mj → X continuous

with
k∑

j=1

aj · Hd(fj;R)[Mj]R = α

}
;

I Then | · |v is a functorial semi-norm on Hd( · ;R), the functorial
semi-norm associated with v.

I For all M ∈ S we have |[M]R|v = v(M).
I If v is finite and S = Mfdd, then also | · |v is finite. [Thom]
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Functorial semi-norms out of mapping degrees

Example (`1-semi-norm, revisited)

If d ∈ N \ {3}, then the functorial semi-norm on Hd( · ;R) associated
with the simplicial volume is the `1-semi-norm.

Example (surface semi-norm, revisited)

The Euler characteristic is functorial on the class of all products of oriented
closed connected surfaces of genus at least 1 [Gromov].
The induced semi-norm on H∗( · ;R) is the surface semi-norm.
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Solving Problem A

Problem A (Gromov)

Show that “most interesting” even-dimensional manifolds cannot be
dominated by a product of surfaces!

Idea

Translate this problem into a question about fundamental groups.
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Presentability by products

Definition
An oriented closed connected manifold M is presentable by a product if
there exist oriented closed connected manifolds S1, S2 of non-zero
dimension that admit a map S1 × S2 −→ M of non-zero degree.

Problem A′

Show that “most interesting” oriented closed connected manifolds are not
presentable by a product!

Definition
A group Γ is presentable by a product if there exist groups Γ1, Γ2 that
admit a homomorphism ϕ : Γ1 × Γ2 −→ Γ that has finite index image and
such that ϕ(Γ1) and ϕ(Γ2) are infinite.
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Manifolds/groups not presentable by products

Theorem (Kotschick, Löh)

Let M be a rationally essential oriented closed connected manifold
(i.e., the classifying map M −→ Bπ1(M) sends [M]R to a non-zero class).
If π1(M) is not presentable by a product, then M is not presentable
by a product.

Proof.

I Proceed by contraposition.
I Classifying spaces (and maps between them) are compatible

(up to homotopy) with products.
I Homomorphisms induced by maps of non-zero degree have finite

index image.
I Rational homology of finite groups is concentrated in degree 0.
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Groups not presentable by products

Theorem (Kotschick, Löh; based on results from geometric group
theory)

I Non-elementary hyperbolic groups are not presentable by products.

I Mapping class groups of oriented closed surfaces of genus at least 2.
I Aut(Fn) and Out(Fn) are for n ∈ N>1 not presentable by products.
I . . .

Proof.

I Presentability by products implies that “many” elements have “large”
centralisers.

I More geometrically: Commuting subgroups of infinite order form a
too big “flat” part of the group.

I However, in all the above classes of groups, there are “many”
elements of infinite order that have “small” centralisers.
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Manifolds not presentable by products

Corollary (Kotschick, Löh)

Oriented closed connected hyperbolic manifolds (of dimension at least 3)
are not presentable by a product (of surfaces).

Theorem (Kotschick, Löh)

Oriented closed connected irreducible locally symmetric spaces of
non-compact type (of dimension at least 3) are not presentable by a
product (of surfaces).

Clara Löh Solving Problem A: Negatively curved groups 18
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Solving Problem B

Problem B (Gromov)

Are all functorial semi-norms on singular homology trivial
on all simply connected spaces?

Idea
Translate this problem into a problem of mapping degrees
of simply connected manifolds!

Definition (inflexible manifold)

An oriented closed connected manifold M is inflexible if{
deg f

∣∣ f : M −→ M continuous
}
⊂ {−1, 0, 1}.
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Inflexibility and functorial semi-norms

Proposition (Crowley, Löh)

Let N be an oriented closed connected inflexible d-manifold. Then there is
a functorial semi-norm | · | on Hd( · ;R) with

∣∣[N]R
∣∣ = 100 6∈ {0,∞}.

Proof.

I The map

v : Mfdd −→ R≥0 ∪ {∞}
M 7−→ 100 · sup

{
|deg f |

∣∣ f : M −→ N continuous
}

is a functorial semi-norm on Mfdd.
I Because N is inflexible we have v(N) = 100 · 1.
I Now the functorial semi-norm on Hd( · ;R) associated with v has the

desired properties.
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Simply connected inflexible manifolds?

Problem B′

Find an oriented closed simply connected inflexible manifold!

I Spheres are not inflexible.
I Low dimensions. Oriented closed simply connected manifolds of

dimension at most 6 are not inflexible. [Shiga]
I Hyperbolic manifolds are inflexible (simplicial volume!), but not simply

connected (when oriented, closed, connected).

Idea

Use rational homotopy theory.

Clara Löh Solving Problem B: Inflexible manifolds 21



Simply connected inflexible manifolds?

Problem B′

Find an oriented closed simply connected inflexible manifold!

I Spheres are not inflexible.

I Low dimensions. Oriented closed simply connected manifolds of
dimension at most 6 are not inflexible. [Shiga]

I Hyperbolic manifolds are inflexible (simplicial volume!), but not simply
connected (when oriented, closed, connected).

Idea

Use rational homotopy theory.

Clara Löh Solving Problem B: Inflexible manifolds 21



Simply connected inflexible manifolds?

Problem B′

Find an oriented closed simply connected inflexible manifold!

I Spheres are not inflexible.
I Low dimensions. Oriented closed simply connected manifolds of

dimension at most 6 are not inflexible. [Shiga]

I Hyperbolic manifolds are inflexible (simplicial volume!), but not simply
connected (when oriented, closed, connected).

Idea

Use rational homotopy theory.

Clara Löh Solving Problem B: Inflexible manifolds 21



Simply connected inflexible manifolds?

Problem B′

Find an oriented closed simply connected inflexible manifold!

I Spheres are not inflexible.
I Low dimensions. Oriented closed simply connected manifolds of

dimension at most 6 are not inflexible. [Shiga]
I Hyperbolic manifolds are inflexible (simplicial volume!), but not simply

connected (when oriented, closed, connected).

Idea

Use rational homotopy theory.

Clara Löh Solving Problem B: Inflexible manifolds 21



Simply connected inflexible manifolds?

Problem B′

Find an oriented closed simply connected inflexible manifold!

I Spheres are not inflexible.
I Low dimensions. Oriented closed simply connected manifolds of

dimension at most 6 are not inflexible. [Shiga]
I Hyperbolic manifolds are inflexible (simplicial volume!), but not simply

connected (when oriented, closed, connected).

Idea

Use rational homotopy theory.

Clara Löh Solving Problem B: Inflexible manifolds 21



Rational homotopy theory in a nutshell

Topology −→ TopologyQ ←→ Algebra

simply connected spaces rational spaces dga’s
continuous maps dga morphisms

Problem B′′

Find an inflexible dga that is the model of a simply connected manifold!

By the work of Sullivan and Barge this is a purely algebraic problem.
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Simply connected inflexible manifolds!

Example (Crowley, Löh; based on work by Arkowitz, Lupton)

Let A be the dga A :=
∧

(x1, x2, y1, y2, y3, z), where the generators have
degree 2, 4, 9, 11, 13, 35,

and the differential d : A −→ A is given by

dx1 := 0
dx2 := 0

dy1 := x3
1x2

dy2 := x2
1x2

2
dy3 := x1x3

2

dz := x4
2y1y2 − x1x3

2y1y3 + x2
1x2

2y2y3
+ x18

1 + x9
2

= x2
2 ·

d(y1y2y3)
x1x2

+ x18
1 + x9

2.

This dga has the following properties:

I The dga A is elliptic and hence satisfies Poincaré duality.
I The dga A has formal dimension 64.
I The “signature” of A is 0; moreover, the “Witt index” of A is 0.
I There is an oriented closed simply connected manifold with minimal

model A. [Barge, Sullivan]
I The dga A is inflexible.
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A strange functorial semi-norm in singular homology

Corollary (Crowley, Löh)

I There exist oriented closed connected simply connected manifolds
(of non-zero dimension) that are inflexible.

I In particular, there exists functorial semi-norms on Hd( · ;R) for
certain d ∈ N>0 that take finite non-zero values on certain simply
connected spaces.

I In fact, we construct infinitely many examples of simply connected
inflexible manifolds in each of infinitely many dimensions.

I More recently, further examples have been constructed by Costoya
and Viruel, as well as by Amann.
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