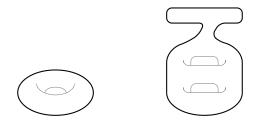
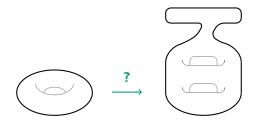
Functorial semi-norms in homology and geometry Chern Centennial Conference. MSRI. 2011

Clara Löh Fakultät für Mathematik. Universität Regensburg

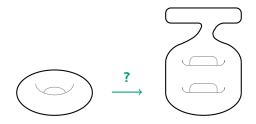
Universität Regensburg





Problem

Describe the set of all continuous maps between two given manifolds of the same dimension!



Problem

Describe the set of all continuous maps between two given manifolds of the same dimension!

Problem

Describe the set of all possible mapping degrees for maps between two given manifolds of the same dimension!

functorial semi-norms degree theorems

Problem A (Gromov)

Show that "most interesting" even-dimensional manifolds cannot be dominated by a product of surfaces!

Problem B (Gromov)

Are all functorial semi-norms on singular homology trivial on all simply connected spaces?

functorial semi-norms degree theorems

Problem A (Gromov)

Show that "most interesting" even-dimensional manifolds cannot be dominated by a product of surfaces!

Problem B (Gromov)

Are all functorial semi-norms on singular homology trivial on all simply connected spaces?

... Both problems can be solved by suitable translations into algebra.

Overview

Functorial semi-norms \longrightarrow degree theorems

Degree theorms \longrightarrow functorial semi-norms

Solving Problem A: Negatively curved groups

Solving Problem B: Inflexible manifolds

Functorial semi-norms in singular homology

Definition (functorial semi-norm in homology; Gromov)

Let $d \in \mathbb{N}$. A functorial semi-norm on $H_d(\cdot; \mathbb{R})$

► consists of a choice of a (possibly infinite) semi-norm $|\cdot|$ on $H_d(X; \mathbb{R})$ for all topological spaces X that is compatible with continuous maps:

Functorial semi-norms in singular homology

Definition (functorial semi-norm in homology; Gromov)

Let $d \in \mathbb{N}$. A functorial semi-norm on $H_d(\cdot; \mathbb{R})$

- ► consists of a choice of a (possibly infinite) semi-norm $|\cdot|$ on $H_d(X; \mathbb{R})$ for all topological spaces X that is compatible with continuous maps:
- ► For every continuous map $f: X \longrightarrow Y$ and all classes $\alpha \in H_d(X; \mathbb{R})$ we have

 $|H_d(f;\mathbb{R})(\alpha)| \leq |\alpha|.$

Why are functorial semi-norms interesting?

Proposition (functorial semi-norms \longrightarrow degree theorems)

Let $d \in \mathbb{N}$ *, and let* $| \cdot |$ *be a functorial semi-norm on* $H_d(\cdot; \mathbb{R})$ *.*

• If $f: M \longrightarrow N$ is a map between oriented closed connected *d*-manifolds, then

$$\left|\deg f\right| \cdot \left| [N]_{\mathbb{R}} \right| = \left| H_d(f; \mathbb{R})([M]_{\mathbb{R}}) \right| \le \left| [M]_{\mathbb{R}} \right|.$$

Why are functorial semi-norms interesting?

Proposition (functorial semi-norms \longrightarrow degree theorems)

Let $d \in \mathbb{N}$ *, and let* $| \cdot |$ *be a functorial semi-norm on* $H_d(\cdot; \mathbb{R})$ *.*

If f: M → N is a map between oriented closed connected d-manifolds, then

 $\left|\operatorname{deg} f\right| \cdot \left| [N]_{\mathbb{R}} \right| = \left| H_d(f; \mathbb{R})([M]_{\mathbb{R}}) \right| \le \left| [M]_{\mathbb{R}} \right|.$

• In particular: In this situation, if $|[N]_{\mathbb{R}}| \neq 0$, then

$$|\deg f| \leq \frac{|[M]_{\mathbb{R}}|}{|[N]_{\mathbb{R}}|}.$$

The ℓ^1 -semi-norm

Example (Gromov)

Let $d \in \mathbb{N}$.

• If $c = \sum_{\sigma \in S_d(X)} a_{\sigma} \cdot \sigma$ is a singular chain, then $|c|_1 := \sum_{\sigma \in S_d(X)} |a_{\sigma}|$.

▶ If $\alpha \in H_d(X; \mathbb{R})$, then the ℓ^1 -semi-norm of α is defined by

 $\|\alpha\|_1 := \inf\{|c|_1 \mid c \in C_d(X; \mathbb{R}) \text{ is a cycle representing } \alpha\} \in \mathbb{R}_{\geq 0}.$

The ℓ^1 -semi-norm

Example (Gromov)

Let $d \in \mathbb{N}$.

- If $c = \sum_{\sigma \in S_d(X)} a_{\sigma} \cdot \sigma$ is a singular chain, then $|c|_1 := \sum_{\sigma \in S_d(X)} |a_{\sigma}|$.
- ▶ If $\alpha \in H_d(X; \mathbb{R})$, then the ℓ^1 -semi-norm of α is defined by

 $\|\alpha\|_1 := \inf\{|c|_1 \mid c \in C_d(X; \mathbb{R}) \text{ is a cycle representing } \alpha\} \in \mathbb{R}_{\geq 0}.$

Definition (simplicial volume; Gromov)

The simplicial volume of an oriented closed connected M is defined by

 $\|\boldsymbol{M}\| := \|[\boldsymbol{M}]_{\mathbb{R}}\|_{1}.$

By the above, non-vanishing results for the simplicial volume lead to degree theorems.

- Let $d \in \mathbb{N}_{>0}$.
 - ► Spheres.

Let $d \in \mathbb{N}_{>0}$.

• Spheres.
$$||S^d|| = 0$$
.

. . .

Let $d \in \mathbb{N}_{>0}$.

• Spheres. $||S^d|| = 0$.

$$1 \cdot \begin{array}{c} 1 \cdot \begin{array}{c} 1 \\ 2 \end{array} \\ \hline 1 \\ \hline 2 \end{array} \\ \hline 3 \\ \hline 3 \end{array} \\ \hline 3 \\ \hline$$

• Tori. Similarly, $\|(S^1)^d\| = 0$.

. . .

Let $d \in \mathbb{N}_{>0}$.

• Spheres. $||S^d|| = 0$.

$$1 \cdot \begin{array}{c} 1 \cdot \begin{array}{c} 1 \\ 2 \end{array} \\ \hline 1 \\ 2 \end{array} \\ \hline 1 \\ 3 \end{array} \\ \hline 1 \\ 3 \end{array} \\ \hline 3 \\$$

• Tori. Similarly,
$$\|(S^1)^d\| = 0$$
.

Simply connected spaces. If X is simply connected and α ∈ H_d(X; ℝ), then (!)

$$\|\alpha\|_1 = 0.$$

More generally, the same holds also for spaces with amenable fundamental group. [Gromov]

. . .

Hyperbolic manifolds. If M is an oriented closed connected hyperbolic d-manifold, then

$$\|M\|=\frac{\operatorname{vol} M}{v_d}>0,$$

where v_d is the supremum of volumes of geodesic *d*-simplices in hyperbolic *d*-space. [Gromov, Thurston]

Hyperbolic manifolds. If M is an oriented closed connected hyperbolic d-manifold, then

$$\|M\|=\frac{\operatorname{vol} M}{v_d}>0,$$

where v_d is the supremum of volumes of geodesic *d*-simplices in hyperbolic *d*-space. [Gromov, Thurston] In particular: Degree theorems for maps to hyperbolic manifolds.

 Hyperbolic manifolds. If *M* is an oriented closed connected hyperbolic *d*-manifold, then

$$\|M\|=\frac{\operatorname{vol} M}{v_d}>0,$$

where v_d is the supremum of volumes of geodesic *d*-simplices in hyperbolic *d*-space. [Gromov, Thurston] In particular: Degree theorems for maps to hyperbolic manifolds.

Negative curvature. If *M* is an oriented closed connected Riemannian manifold of negative sectional curvature, then

$$\|M\|>0.$$

[Inoue, Yano]

 Hyperbolic manifolds. If *M* is an oriented closed connected hyperbolic *d*-manifold, then

$$\|M\|=\frac{\operatorname{vol} M}{v_d}>0,$$

where v_d is the supremum of volumes of geodesic *d*-simplices in hyperbolic *d*-space. [Gromov, Thurston] In particular: Degree theorems for maps to hyperbolic manifolds.

Negative curvature. If *M* is an oriented closed connected Riemannian manifold of negative sectional curvature, then

$$\|M\|>0.$$

[Inoue, Yano]

 Compact locally symmetric spaces of non-compact type. [Lafont, Schmidt]

 Hyperbolic manifolds. If M is an oriented closed connected hyperbolic d-manifold, then

$$\|M\|=\frac{\operatorname{vol} M}{v_d}>0,$$

where v_d is the supremum of volumes of geodesic *d*-simplices in hyperbolic *d*-space. [Gromov, Thurston] In particular: Degree theorems for maps to hyperbolic manifolds.

Negative curvature. If *M* is an oriented closed connected Riemannian manifold of negative sectional curvature, then

$$\|M\|>0.$$

[Inoue, Yano]

- Compact locally symmetric spaces of non-compact type. [Lafont, Schmidt]
- Generalisations to the non-compact case [Löh, Sauer]

The surface semi-norm

Example (Gromov)

If $\alpha \in H_{2d}(X; \mathbb{R})$, then the surface semi-norm of α is

$$\|\alpha\|_{S} := \inf \left\{ \sum_{j=1}^{k} |a_{j}| \cdot |\chi(S_{j})| \ \middle| \ k \in \mathbb{N}, \ a_{1}, \dots, a_{k} \in \mathbb{R} \setminus \{0\}, \\ S_{1}, \dots, S_{k} \text{ are products of} \\ \text{oriented closed connected surfaces,} \\ f_{1} : S_{1} \to X, \dots, f_{k} : S_{k} \to X \text{ continuous} \\ \text{with } \sum_{j=1}^{k} a_{j} \cdot H_{d}(f_{j}; \mathbb{R})[S_{j}]_{\mathbb{R}} = \alpha \right\}.$$

Definition (functorial semi-norm on manifolds)

Let $d \in \mathbb{N}$, let Mfd_d be the class of oriented closed connected *d*-manifolds, and let $S \subset Mfd_d$.

- ► A functorial semi-norm on *S* is a map $v: S \longrightarrow \mathbb{R}_{\geq 0} \cup \{\infty\}$ such that:
- ▶ For all continuous maps $f: M \longrightarrow N$ with $M, N \in S$ we have

 $|\deg f| \cdot v(N) \leq v(M).$

Proposition (Crowley, Löh)

Let $d \in \mathbb{N}$, and let $v \colon S \longrightarrow \mathbb{R}_{\geq 0} \cup \{\infty\}$ be a functorial semi-norm on a class $S \subset Mfd_d$.

Proposition (Crowley, Löh)

Let $d \in \mathbb{N}$, and let $v : S \longrightarrow \mathbb{R}_{\geq 0} \cup \{\infty\}$ be a functorial semi-norm on a class $S \subset Mfd_d$. For a space X and $\alpha \in H_d(X; \mathbb{R})$ we define

$$\begin{aligned} |\alpha|_{v} &:= \inf \left\{ \sum_{j=1}^{k} |a_{j}| \cdot v(M_{j}) \mid k \in \mathbb{N}, \ a_{j} \in \mathbb{R} \setminus \{0\}, M_{j} \in S, \\ f_{j} &: M_{j} \to X \ continuous \\ with \sum_{j=1}^{k} a_{j} \cdot H_{d}(f_{j}; \mathbb{R})[M_{j}]_{\mathbb{R}} = \alpha \right\}; \end{aligned}$$

► Then $|\cdot|_v$ is a functorial semi-norm on $H_d(\cdot; \mathbb{R})$, the functorial semi-norm associated with v.

Proposition (Crowley, Löh)

Let $d \in \mathbb{N}$, and let $v : S \longrightarrow \mathbb{R}_{\geq 0} \cup \{\infty\}$ be a functorial semi-norm on a class $S \subset Mfd_d$. For a space X and $\alpha \in H_d(X; \mathbb{R})$ we define

$$\begin{aligned} |\alpha|_{v} &:= \inf \left\{ \sum_{j=1}^{k} |a_{j}| \cdot v(M_{j}) \mid k \in \mathbb{N}, \ a_{j} \in \mathbb{R} \setminus \{0\}, M_{j} \in S, \\ f_{j} &: M_{j} \to X \ continuous \\ with \sum_{j=1}^{k} a_{j} \cdot H_{d}(f_{j}; \mathbb{R})[M_{j}]_{\mathbb{R}} = \alpha \right\}; \end{aligned}$$

- ► Then $|\cdot|_v$ is a functorial semi-norm on $H_d(\cdot; \mathbb{R})$, the functorial semi-norm associated with v.
- For all $M \in S$ we have $|[M]_{\mathbb{R}}|_{v} = v(M)$.

Proposition (Crowley, Löh)

Let $d \in \mathbb{N}$, and let $v : S \longrightarrow \mathbb{R}_{\geq 0} \cup \{\infty\}$ be a functorial semi-norm on a class $S \subset Mfd_d$. For a space X and $\alpha \in H_d(X; \mathbb{R})$ we define

$$\begin{aligned} |\alpha|_{\nu} &:= \inf \left\{ \sum_{j=1}^{k} |a_{j}| \cdot v(M_{j}) \mid k \in \mathbb{N}, \ a_{j} \in \mathbb{R} \setminus \{0\}, M_{j} \in S, \\ f_{j} &: M_{j} \to X \ continuous \\ with \sum_{j=1}^{k} a_{j} \cdot H_{d}(f_{j}; \mathbb{R})[M_{j}]_{\mathbb{R}} = \alpha \right\}; \end{aligned}$$

- ► Then $|\cdot|_v$ is a functorial semi-norm on $H_d(\cdot; \mathbb{R})$, the functorial semi-norm associated with v.
- For all $M \in S$ we have $|[M]_{\mathbb{R}}|_{v} = v(M)$.
- If v is finite and $S = Mfd_d$, then also $|\cdot|_v$ is finite. [Thom]

Example (ℓ^1 -semi-norm, revisited)

If $d \in \mathbb{N} \setminus \{3\}$, then the functorial semi-norm on $H_d(\cdot; \mathbb{R})$ associated with the simplicial volume is the ℓ^1 -semi-norm.

Example (ℓ^1 -semi-norm, revisited)

If $d \in \mathbb{N} \setminus \{3\}$, then the functorial semi-norm on $H_d(\cdot; \mathbb{R})$ associated with the simplicial volume is the ℓ^1 -semi-norm.

Example (surface semi-norm, revisited)

The Euler characteristic is functorial on the class of all products of oriented closed connected surfaces of genus at least 1 [Gromov]. The induced semi-norm on $H_*(\cdot; \mathbb{R})$ is the surface semi-norm.

Solving Problem A

Problem A (Gromov)

Show that "most interesting" even-dimensional manifolds cannot be dominated by a product of surfaces!

Solving Problem A

Problem A (Gromov)

Show that "most interesting" even-dimensional manifolds cannot be dominated by a product of surfaces!

Idea

Translate this problem into a question about fundamental groups.

Presentability by products

Definition

An oriented closed connected manifold *M* is presentable by a product if there exist oriented closed connected manifolds S_1 , S_2 of *non-zero* dimension that admit a map $S_1 \times S_2 \longrightarrow M$ of *non-zero* degree.

Presentability by products

Definition

An oriented closed connected manifold M is presentable by a product if there exist oriented closed connected manifolds S_1 , S_2 of *non-zero dimension* that admit a map $S_1 \times S_2 \longrightarrow M$ of *non-zero degree*.

Problem A'

Show that "most interesting" oriented closed connected manifolds are not presentable by a product!

Presentability by products

Definition

An oriented closed connected manifold M is presentable by a product if there exist oriented closed connected manifolds S_1 , S_2 of *non-zero dimension* that admit a map $S_1 \times S_2 \longrightarrow M$ of *non-zero degree*.

Problem A'

Show that "most interesting" oriented closed connected manifolds are not presentable by a product!

Definition

A group Γ is presentable by a product if there exist groups Γ_1 , Γ_2 that admit a homomorphism $\varphi \colon \Gamma_1 \times \Gamma_2 \longrightarrow \Gamma$ that has *finite index image* and such that $\varphi(\Gamma_1)$ and $\varphi(\Gamma_2)$ are *infinite*.

Manifolds/groups not presentable by products

Theorem (Kotschick, Löh)

Let M be a rationally essential oriented closed connected manifold (i.e., the classifying map $M \longrightarrow B\pi_1(M)$ sends $[M]_{\mathbb{R}}$ to a non-zero class). If $\pi_1(M)$ is not presentable by a product, then M is not presentable by a product.

Manifolds/groups not presentable by products

Theorem (Kotschick, Löh)

Let M be a rationally essential oriented closed connected manifold (i.e., the classifying map $M \longrightarrow B\pi_1(M)$ sends $[M]_{\mathbb{R}}$ to a non-zero class). If $\pi_1(M)$ is not presentable by a product, then M is not presentable by a product.

- Proceed by contraposition.
- Classifying spaces (and maps between them) are compatible (up to homotopy) with products.
- Homomorphisms induced by maps of non-zero degree have finite index image.
- Rational homology of finite groups is concentrated in degree 0.

Theorem (Kotschick, Löh; based on results from geometric group theory)

Non-elementary hyperbolic groups are not presentable by products.

Theorem (Kotschick, Löh; based on results from geometric group theory)

Non-elementary hyperbolic groups are not presentable by products.

Proof.

 Presentability by products implies that "many" elements have "large" centralisers.

Theorem (Kotschick, Löh; based on results from geometric group theory)

Non-elementary hyperbolic groups are not presentable by products.

- Presentability by products implies that "many" elements have "large" centralisers.
- More geometrically: Commuting subgroups of infinite order form a too big "flat" part of the group.

Theorem (Kotschick, Löh; based on results from geometric group theory)

Non-elementary hyperbolic groups are not presentable by products.

- Presentability by products implies that "many" elements have "large" centralisers.
- More geometrically: Commuting subgroups of infinite order form a too big "flat" part of the group.
- However, in all the above classes of groups, there are "many" elements of infinite order that have "small" centralisers.

Theorem (Kotschick, Löh; based on results from geometric group theory)

- Non-elementary hyperbolic groups are not presentable by products.
- Mapping class groups of oriented closed surfaces of genus at least 2.

- Presentability by products implies that "many" elements have "large" centralisers.
- More geometrically: Commuting subgroups of infinite order form a too big "flat" part of the group.
- However, in all the above classes of groups, there are "many" elements of infinite order that have "small" centralisers.

Theorem (Kotschick, Löh; based on results from geometric group theory)

- Non-elementary hyperbolic groups are not presentable by products.
- Mapping class groups of oriented closed surfaces of genus at least 2.
- Aut(F_n) and Out(F_n) are for $n \in \mathbb{N}_{>1}$ not presentable by products.

Proof.

. . .

- Presentability by products implies that "many" elements have "large" centralisers.
- More geometrically: Commuting subgroups of infinite order form a too big "flat" part of the group.
- However, in all the above classes of groups, there are "many" elements of infinite order that have "small" centralisers.

Manifolds not presentable by products

Corollary (Kotschick, Löh)

Oriented closed connected hyperbolic manifolds (of dimension at least 3) are not presentable by a product (of surfaces).

Manifolds not presentable by products

Corollary (Kotschick, Löh)

Oriented closed connected hyperbolic manifolds (of dimension at least 3) are not presentable by a product (of surfaces).

Theorem (Kotschick, Löh)

Oriented closed connected irreducible locally symmetric spaces of non-compact type (of dimension at least 3) are not presentable by a product (of surfaces).

Solving Problem B

Problem B (Gromov)

Are all functorial semi-norms on singular homology trivial on all simply connected spaces?

Solving Problem B

Problem B (Gromov)

Are all functorial semi-norms on singular homology trivial on all simply connected spaces?

Idea

Translate this problem into a problem of mapping degrees of simply connected manifolds!

Solving Problem B

Problem B (Gromov)

Are all functorial semi-norms on singular homology trivial on all simply connected spaces?

Idea

Translate this problem into a problem of mapping degrees of simply connected manifolds!

Definition (inflexible manifold)

An oriented closed connected manifold M is inflexible if

$$\{\deg f \mid f: M \longrightarrow M \text{ continuous}\} \subset \{-1, 0, 1\}.$$

Proposition (Crowley, Löh)

Let N be an oriented closed connected inflexible d-manifold. Then there is a functorial semi-norm $|\cdot|$ on $H_d(\cdot; \mathbb{R})$ with $|[N]_{\mathbb{R}}| = 100 \notin \{0, \infty\}$.

Proposition (Crowley, Löh)

Let N be an oriented closed connected inflexible d-manifold. Then there is a functorial semi-norm $|\cdot|$ on $H_d(\cdot; \mathbb{R})$ with $|[N]_{\mathbb{R}}| = 100 \notin \{0, \infty\}$.

Proof.

► The map

$$\nu \colon \mathsf{Mfd}_d \longrightarrow \mathbb{R}_{\geq 0} \cup \{\infty\}$$
$$M \longmapsto 100 \cdot \sup\{|\mathsf{deg} f| \mid f \colon M \longrightarrow N \text{ continuous}\}$$

is a functorial semi-norm on Mfd_d .

Proposition (Crowley, Löh)

Let N be an oriented closed connected inflexible d-manifold. Then there is a functorial semi-norm $|\cdot|$ on $H_d(\cdot; \mathbb{R})$ with $|[N]_{\mathbb{R}}| = 100 \notin \{0, \infty\}$.

Proof.

► The map

$$\begin{array}{l} \nu \colon \mathsf{Mfd}_d \longrightarrow \mathbb{R}_{\geq 0} \cup \{\infty\} \\ M \longmapsto \mathsf{100} \cdot \mathsf{sup} \big\{ |\mathsf{deg}f| \ \big| \ f \colon M \longrightarrow \mathsf{N} \text{ continuous} \big\} \end{array}$$

is a functorial semi-norm on Mfd_d .

• Because N is inflexible we have $v(N) = 100 \cdot 1$.

Proposition (Crowley, Löh)

Let N be an oriented closed connected inflexible d-manifold. Then there is a functorial semi-norm $|\cdot|$ on $H_d(\cdot; \mathbb{R})$ with $|[N]_{\mathbb{R}}| = 100 \notin \{0, \infty\}$.

Proof.

► The map

$$\nu \colon \mathsf{Mfd}_d \longrightarrow \mathbb{R}_{\geq 0} \cup \{\infty\}$$
$$M \longmapsto 100 \cdot \sup\{|\mathsf{deg} f| \mid f \colon M \longrightarrow N \text{ continuous}\}$$

is a functorial semi-norm on Mfd_d .

- Because N is inflexible we have $v(N) = 100 \cdot 1$.
- Now the functorial semi-norm on H_d(·; ℝ) associated with v has the desired properties.

Problem B'

Find an oriented closed simply connected inflexible manifold!

Problem B'

Find an oriented closed simply connected inflexible manifold!

Spheres are not inflexible.

Problem B'

Find an oriented closed simply connected inflexible manifold!

- Spheres are *not* inflexible.
- Low dimensions. Oriented closed simply connected manifolds of dimension at most 6 are *not* inflexible. [Shiga]

Problem B'

Find an oriented closed simply connected inflexible manifold!

- Spheres are *not* inflexible.
- Low dimensions. Oriented closed simply connected manifolds of dimension at most 6 are *not* inflexible. [Shiga]
- Hyperbolic manifolds are inflexible (simplicial volume!), but not simply connected (when oriented, closed, connected).

Problem B'

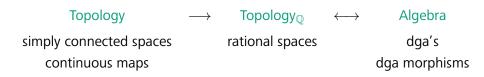
Find an oriented closed simply connected inflexible manifold!

- Spheres are *not* inflexible.
- Low dimensions. Oriented closed simply connected manifolds of dimension at most 6 are *not* inflexible. [Shiga]
- Hyperbolic manifolds are inflexible (simplicial volume!), but not simply connected (when oriented, closed, connected).

Idea

Use rational homotopy theory.

Rational homotopy theory in a nutshell



Rational homotopy theory in a nutshell

Problem B"

Find an inflexible dga that is the model of a simply connected manifold!

Rational homotopy theory in a nutshell

Topology	\longrightarrow	$Topology_{\mathbb{Q}}$	\longleftrightarrow	Algebra
simply connected spaces		rational spaces		dga's
continuous maps				dga morphisms

Problem B"

Find an inflexible dga that is the model of a simply connected manifold! By the work of Sullivan and Barge this is a purely algebraic problem.

Example (Crowley, Löh; based on work by Arkowitz, Lupton)

Let A be the dga $A := \bigwedge (x_1, x_2, y_1, y_2, y_3, z)$, where the generators have degree 2, 4, 9, 11, 13, 35,

Example (Crowley, Löh; based on work by Arkowitz, Lupton)

Let A be the dga $A := \bigwedge (x_1, x_2, y_1, y_2, y_3, z)$, where the generators have degree 2, 4, 9, 11, 13, 35, and the differential $d : A \longrightarrow A$ is given by

$$\begin{array}{rcrcrcrcrc} dx_1 & := & 0 & dy_1 & := & x_1^3 x_2 & dz & := & x_2^4 y_1 y_2 - x_1 x_2^3 y_1 y_3 + x_1^2 x_2^2 y_2 y_3 \\ dx_2 & := & 0 & dy_2 & := & x_1^2 x_2^2 & + & x_1^{18} + x_2^9 \\ dy_3 & := & x_1 x_2^3 & = & x_2^2 \cdot \frac{d(y_1 y_2 y_3)}{x_1 x_2} + x_1^{18} + x_2^9. \end{array}$$

Example (Crowley, Löh; based on work by Arkowitz, Lupton)

Let A be the dga $A := \bigwedge (x_1, x_2, y_1, y_2, y_3, z)$, where the generators have degree 2, 4, 9, 11, 13, 35, and the differential $d : A \longrightarrow A$ is given by

$$\begin{array}{rcrcrcrcrc} dx_1 & := & 0 & dy_1 & := & x_1^3 x_2 & dz & := & x_2^4 y_1 y_2 - x_1 x_2^3 y_1 y_3 + x_1^2 x_2^2 y_2 y_3 \\ dx_2 & := & 0 & dy_2 & := & x_1^2 x_2^2 & + & x_1^{18} + x_2^9 \\ dy_3 & := & x_1 x_2^3 & = & x_2^2 \cdot \frac{d(y_1 y_2 y_3)}{x_1 x_2} + x_1^{18} + x_2^9. \end{array}$$

This dga has the following properties:

► The dga A is elliptic and hence satisfies Poincaré duality.

Example (Crowley, Löh; based on work by Arkowitz, Lupton)

Let A be the dga $A := \bigwedge (x_1, x_2, y_1, y_2, y_3, z)$, where the generators have degree 2, 4, 9, 11, 13, 35, and the differential $d : A \longrightarrow A$ is given by

$$\begin{array}{rcrcrcrcrc} dx_1 & := & 0 & dy_1 & := & x_1^3 x_2 & dz & := & x_2^4 y_1 y_2 - x_1 x_2^3 y_1 y_3 + x_1^2 x_2^2 y_2 y_3 \\ dx_2 & := & 0 & dy_2 & := & x_1^2 x_2^2 & + & x_1^{18} + x_2^9 \\ dy_3 & := & x_1 x_2^3 & = & x_2^2 \cdot \frac{d(y_1 y_2 y_3)}{x_1 x_2} + x_1^{18} + x_2^9. \end{array}$$

- The dga A is elliptic and hence satisfies Poincaré duality.
- The dga A has formal dimension 64.

Example (Crowley, Löh; based on work by Arkowitz, Lupton)

Let A be the dga $A := \bigwedge (x_1, x_2, y_1, y_2, y_3, z)$, where the generators have degree 2, 4, 9, 11, 13, 35, and the differential $d : A \longrightarrow A$ is given by

$$\begin{array}{rcrcrcrcrc} dx_1 & := & 0 & dy_1 & := & x_1^3 x_2 & dz & := & x_2^4 y_1 y_2 - x_1 x_2^3 y_1 y_3 + x_1^2 x_2^2 y_2 y_3 \\ dx_2 & := & 0 & dy_2 & := & x_1^2 x_2^2 & + & x_1^{18} + x_2^9 \\ dy_3 & := & x_1 x_2^3 & = & x_2^2 \cdot \frac{d(y_1 y_2 y_3)}{x_1 x_2} + x_1^{18} + x_2^9. \end{array}$$

- The dga A is elliptic and hence satisfies Poincaré duality.
- The dga A has formal dimension 64.
- ► The "signature" of A is 0; moreover, the "Witt index" of A is 0.

Example (Crowley, Löh; based on work by Arkowitz, Lupton)

Let A be the dga $A := \bigwedge (x_1, x_2, y_1, y_2, y_3, z)$, where the generators have degree 2, 4, 9, 11, 13, 35, and the differential $d : A \longrightarrow A$ is given by

$$\begin{array}{rcrcrcrcrc} dx_1 & := & 0 & dy_1 & := & x_1^3 x_2 & dz & := & x_2^4 y_1 y_2 - x_1 x_2^3 y_1 y_3 + x_1^2 x_2^2 y_2 y_3 \\ dx_2 & := & 0 & dy_2 & := & x_1^2 x_2^2 & + & x_1^{18} + x_2^9 \\ dy_3 & := & x_1 x_2^3 & = & x_2^2 \cdot \frac{d(y_1 y_2 y_3)}{x_1 x_3} + x_1^{18} + x_2^9. \end{array}$$

- ► The dga A is elliptic and hence satisfies Poincaré duality.
- The dga A has formal dimension 64.
- ► The "signature" of A is 0; moreover, the "Witt index" of A is 0.
- There is an oriented closed simply connected manifold with minimal model A. [Barge, Sullivan]

Example (Crowley, Löh; based on work by Arkowitz, Lupton)

Let A be the dga $A := \bigwedge (x_1, x_2, y_1, y_2, y_3, z)$, where the generators have degree 2, 4, 9, 11, 13, 35, and the differential $d : A \longrightarrow A$ is given by

$$\begin{array}{rcrcrcrcrc} dx_1 & := & 0 & dy_1 & := & x_1^3 x_2 & dz & := & x_2^4 y_1 y_2 - x_1 x_2^3 y_1 y_3 + x_1^2 x_2^2 y_2 y_3 \\ dx_2 & := & 0 & dy_2 & := & x_1^2 x_2^2 & + & x_1^{18} + x_2^9 \\ dy_3 & := & x_1 x_2^3 & = & x_2^2 \cdot \frac{d(y_1 y_2 y_3)}{x_1 x_3} + x_1^{18} + x_2^9. \end{array}$$

- The dga A is elliptic and hence satisfies Poincaré duality.
- The dga A has formal dimension 64.
- ► The "signature" of A is 0; moreover, the "Witt index" of A is 0.
- There is an oriented closed simply connected manifold with minimal model A. [Barge, Sullivan]
- ► The dga A is inflexible.

A strange functorial semi-norm in singular homology

Corollary (Crowley, Löh)

There exist oriented closed connected simply connected manifolds (of non-zero dimension) that are inflexible.

A strange functorial semi-norm in singular homology

Corollary (Crowley, Löh)

- There exist oriented closed connected simply connected manifolds (of non-zero dimension) that are inflexible.
- In particular, there exists functorial semi-norms on H_d(·; ℝ) for certain d ∈ N_{>0} that take finite non-zero values on certain simply connected spaces.

A strange functorial semi-norm in singular homology

Corollary (Crowley, Löh)

- There exist oriented closed connected simply connected manifolds (of non-zero dimension) that are inflexible.
- In particular, there exists functorial semi-norms on H_d(·; ℝ) for certain d ∈ N_{>0} that take finite non-zero values on certain simply connected spaces.
- In fact, we construct infinitely many examples of simply connected inflexible manifolds in each of infinitely many dimensions.
- More recently, further examples have been constructed by Costoya and Viruel, as well as by Amann.