Impressum
Datenschutz
The de Rham-Witt complex
Veronika Ertl
Semester
WiSe 2015 / 16
Content / Literature / Recommended previous knowledge Content/Literature/Recommended previous knowledge:
The (classical p-typical) de Rham-Witt complex is a complex of sheaves on a scheme over a perfect
field of prime characteristic p.More precisely, it is a pro-system of differential graded algebras.
In degree zero, it gives the Witt vectors and the first complex in the inverse limit is the de Rham
complex. It provides an explicit way to compute crystalline cohomology. The constructions go back to
Bloch,Deligne and Illusie. Since then various extensions and different methods are available.
Current developements have applications in K-theory and p-adic Hodge theory.
We will start with a self-contained introduction to Witt vectors.
We continue with the definition of the (p-typical) de Rham-Witt complex following Illusie's paper
and discusss the comparison to crystalline cohomology.
Depending on the interest of the audience we will then decide in which direction to go: possible
topics are the overconvergent de Rham-Witt complex of Davis-Langer-Zink, the big de Rham-Witt
complex of Hesselholt-Madsen, logarithmic versions (Hyodo-Kato).
Literature:
[Bou83] Nicholas Bourbaki: Alèbre commutative. Chapitre 8 et 9. (1983).
[CL98] Antoine Chambert-Loir: Cohomologie cristalline: un survol.
http://perso.univ-rennes1.fr/antoine.chambert-loir/publications.html (1998).
[DLZ11] Christopher Davis, Andreas Langer and Thomas Zink: Overconvergent de Rham-Witt cohomology.
Annales Scientifiques de l'Ecole Normale Supérieure,44(2), (2011).
[Hes05] Lars Hesselholt: Witt vectors. http://www.math.nagoya-u.ac.jp/~larsh/teaching/F2005_917/
(2005).
[HM03]Lars Hesselholt and Ib Madsen: The de Rham-Witt complex in mixed characteristic.
http://www.math.nagoya-u.ac.jp/~larsh/papers/013 (2003).
[HK94] Osamu Hyodo and Kazuya Kato,: Semi-stable reduction and crystalline cohomology with
logarithmic poles. Périodes p-adiques (Bures-sur-Yvette, 1988). Astérisque 223 (1994),
221–268.
[Ill79] Luc Illusie: Complexe de de Rham-Witt et cohomologie cristalline. Annales scientifiques de
l'Ecole Normale Supérieure, 12(4): 501-661 (1979).
[LZ03] Andreas Langer and Thomas Zink: De Rham-Witt complex for a proper and smooth morphism.
http://www.mathematik.uni-bielefeld.de/~zink/z_publ.htm (2003)
Prerequisits: algebra.
Zeit und Raum der Veranstaltung
Mo. 8-10 Uhr in BIO 1.1.34
Art der Veranstaltung
Vorlesung
Zeit und Raum der Zentralübung
Fr., 8-10 in BIO 1.1.34
Zielgruppen
Master, PhD students
Prüfungsbestandteile
Mündliche 30-minütige Prüfung nach Terminabsprache mit dem Dozenten
Termine und Dauer von Prüfung und erster Wiederholungsprüfung
TBA
Anmeldeverfahren und Termine zu den Prüfungsbestandteilen
TBA
Liste der Module
MV, MArGeo
Leistungspunkte
6