Impressum
Datenschutz
Seminar: Coxeter Groups
Clara Löh/Michal Marcinkowski
Semester
SoSe 2016
Inhaltsangabe / Literatur / empfohlene Vorkenntnisse
A reflection group (or more general, a Coxeter group) is the group of
symmetries of a "geometric object" generated by a set of reflections;
for example, a group of symmetries of the pentagonal tiling of the
hyperbolic plane generated by the reflections along the edges of a
given pentagon. Coxeter groups exhibit interesting algebraic and
topological properties and provide a great playground to apply methods
from geometry group theory, algebraic topology, and algebra.
Coxeter groups play an important role in several areas of
mathematics. Among others, they were used to construct various
examples of groups and manifolds with unexpected properties. E.g., to
construct exotic examples of aspherical manifolds (an aspherical
manifold is a manifold whose universal cover is contractible).
The purpose of this seminar is to introduce Coxeter groups, study
their basic properties and examples coming from geometry (as tilings
and polygons). Then, we introduce the main geometric object assigned
to each Coxeter group W, called the Davis' complex. This complex is a
natural space for which W is the group of symmetries. Thus it
generalises, e.g., the concept of a tiling of hyperbolic or
Euclidean space. The important feature which the Davis complex shares with
Euclidean or hyperbolic space is that it is "non-positively curved"
and contractible. As the last goal, we want to discuss some
constructions of exotic aspherical manifolds. To attend the seminar,
a basic knowledge of algebraic topology (fundamental group,
homology theory) is expected. Familiarity with basic concepts of
geometric group theory will be helpful but is not required.
The main reference for the seminar will be the book
The Geometry
and Topology of Coxeter Groups by M. Davis.
This seminar will be held in English. The written report can be in English or German. The handouts should be in English.
-
N. Bourbaki. Groupes et algèbres de Lie. Chapitre IV, V, VI.
-
M. R. Bridson, A. Haefliger. Metric spaces of non-positive curvature.
-
M. W. Davis and G. Moussong. Notes on nonpositively curved polyhedra.
-
M. W. Davis. The geometry and topology of Coxeter groups.
-
M. W. Davis. Groups generated by reflections and aspherical manifolds not covered by Euclidean space. Ann. of Math. (2), 117(2):293--324, 1983.
Content / Literature / Recommended previous knowledge Zeit und Raum der Veranstaltung
Wednesdays, 8:30--10:00
Art der Veranstaltung
Seminar
Link zur Webseite (des/der Dozenten/in, der Veranstaltung)
Zielgruppen
Bachelor, Master
Anmeldedetails
The organisational meeting for this seminar will be on Wednesday, January 27, at 9:15 (M 101).
Alternatively, you can register for this seminar by sending an email to
clara.loeh@mathematik.uni-r.de .
Leistungsnachweise, die Teilnahmevoraussetzung sind
None.
Prüfungsbestandteile
Vortrag, schriftliche Ausarbeitung; je nach zutreffendem Modulkatalog ist der Vortrag eine
Studienleistung.
Giving a presentation, writing a detailed report; depending on the applicable Modulkatalog the
presentation is a Studienleistung.
Termine und Dauer von Prüfung und erster Wiederholungsprüfung
--
Anmeldeverfahren und Termine zu den Prüfungsbestandteilen
FlexNow
Anteile der Bestandteile an der Note
Je nach zutreffendem Modulkatalog basiert die Note entweder auf der schriftlichen Ausarbeitung oder
auf dem Vortag.
Depending on the applicable Modulkatalog: the grade is based either only on the written report or
only on the presentation.
Bedingungen für einen unbenoteten Leistungsnachweis
Giving a presentation, writing a detailed report, active participation
Liste der Module
BSem, MV, MSem, LGySem
Leistungspunkte
BSem, MSem, LGySem: siehe Modulkatalog. MV und Nebenfach: 4,5 LP bei Studienbeginn ab WS 15/16, 6 LP
bei Studienbeginn vor WS15/16