Impressum

Datenschutz


Seminar: Coxeter Groups
Clara Löh/Michal Marcinkowski

Semester
SoSe 2016

Inhaltsangabe / Literatur / empfohlene Vorkenntnisse
A reflection group (or more general, a Coxeter group) is the group of symmetries of a "geometric object" generated by a set of reflections; for example, a group of symmetries of the pentagonal tiling of the hyperbolic plane generated by the reflections along the edges of a given pentagon. Coxeter groups exhibit interesting algebraic and topological properties and provide a great playground to apply methods from geometry group theory, algebraic topology, and algebra.

reflection group

Coxeter groups play an important role in several areas of mathematics. Among others, they were used to construct various examples of groups and manifolds with unexpected properties. E.g., to construct exotic examples of aspherical manifolds (an aspherical manifold is a manifold whose universal cover is contractible).

The purpose of this seminar is to introduce Coxeter groups, study their basic properties and examples coming from geometry (as tilings and polygons). Then, we introduce the main geometric object assigned to each Coxeter group W, called the Davis' complex. This complex is a natural space for which W is the group of symmetries. Thus it generalises, e.g., the concept of a tiling of hyperbolic or Euclidean space. The important feature which the Davis complex shares with Euclidean or hyperbolic space is that it is "non-positively curved" and contractible. As the last goal, we want to discuss some constructions of exotic aspherical manifolds. To attend the seminar, a basic knowledge of algebraic topology (fundamental group, homology theory) is expected. Familiarity with basic concepts of geometric group theory will be helpful but is not required.

The main reference for the seminar will be the book The Geometry and Topology of Coxeter Groups by M. Davis.

This seminar will be held in English. The written report can be in English or German. The handouts should be in English.

Content / Literature / Recommended previous knowledge English

Zeit und Raum der Veranstaltung
Wednesdays, 8:30--10:00

Art der Veranstaltung
Seminar

Link zur Webseite (des/der Dozenten/in, der Veranstaltung)

Zielgruppen
Bachelor, Master

Anmeldedetails
The organisational meeting for this seminar will be on Wednesday, January 27, at 9:15 (M 101). Alternatively, you can register for this seminar by sending an email to clara.loeh@mathematik.uni-r.de .

Leistungsnachweise, die Teilnahmevoraussetzung sind
None.

Prüfungsbestandteile
Vortrag, schriftliche Ausarbeitung; je nach zutreffendem Modulkatalog ist der Vortrag eine Studienleistung. Giving a presentation, writing a detailed report; depending on the applicable Modulkatalog the presentation is a Studienleistung.

Termine und Dauer von Prüfung und erster Wiederholungsprüfung
--

Anmeldeverfahren und Termine zu den Prüfungsbestandteilen
FlexNow

Anteile der Bestandteile an der Note
Je nach zutreffendem Modulkatalog basiert die Note entweder auf der schriftlichen Ausarbeitung oder auf dem Vortag. Depending on the applicable Modulkatalog: the grade is based either only on the written report or only on the presentation.

Bedingungen für einen unbenoteten Leistungsnachweis
Giving a presentation, writing a detailed report, active participation

Liste der Module
BSem, MV, MSem, LGySem

Leistungspunkte
BSem, MSem, LGySem: siehe Modulkatalog. MV und Nebenfach: 4,5 LP bei Studienbeginn ab WS 15/16, 6 LP bei Studienbeginn vor WS15/16