Approaches to quantization of space-timeBernd Ammann, Felix Finster
SemesterSoSe 2012
In the first series of talks, we give an overview of non-commutative geometry in the sense of Alain Connes. The main objects are spectral tripels (A,D,H) which consist of an algebra A, an A-module H and an operator D acting on H. For a classical Riemannian manifold M equipped with a metric and a spin structure, one takes as A the algebra of smooth functions on M, as H the space of all spinor fields and as D the Dirac operator. This encodes the geometry of M. A non-commutative space is then a spectral triple for which A is non-commutative. In particular we reformulate the Einstein-Hilbert functional as a spectral action.
The second part is devoted to the quantization of fields in a fixed globally hyperbolic space-time. In preparation, we analyze the solutions of the classical field equations. For the quantization we introduce a nets of $C^*$-algebras. We construct CCR and CAR-representations and construct the Fock space in the bosonic and the fermionic case.
In the third part, we introduce the fermionic projector approach. After a general overview, we give the general construction of the fermionic projector in a globally hyperbolic space-time. The underlying action principle is analyzed in the setting of causal variational principles. The generalization to causal fermion systems allows to describe "quantum space-times". The connection to quantum field theory in Minkowski space is obtained by taking the so-called continuum limit.
For details about the talks and for literature we refer to the webpage of the seminar.
Zeit und Raum der VeranstaltungDo 10-12 in M101
Art der VeranstaltungSeminar
Zeit und Raum des TutoriumsFr 8-10 in M119 und M225
Link zur Webseite (des/der Dozenten/in, der Veranstaltung)
ZielgruppenBachelor, Master
AnmeldedetailsAnmeldung und Vortragsverteilung per Email
Prüfungsbestandteile90-minütiger erfolgreicher Vortrag im Seminar
Termine und Dauer von Prüfung und erster WiederholungsprüfungDer Vortrag hat die Funktion der Modulprüfung
Anmeldeverfahren und Termine zu den PrüfungsbestandteilenFlexNow
Anteile der Bestandteile an der Note100% Vortrag
Bedingungen für einen unbenoteten Leistungsnachweis90-minütiger erfolgreicher Vortrag im Seminar
Liste der ModuleBSem, MSem
Leistungspunkte6