Impressum
Datenschutz
Seiberg-Witten theory
Bernd Ammann und Nicolas Ginoux
Semester
WiSe 2012 / 13
Inhaltsangabe / Literatur / empfohlene Vorkenntnisse
Seiberg-Witten invariants are a very efficient tool for
understanding topological and geometrical properties of
compact 4-dimensional manifolds. If b2+>1, then these invariants only
depend on the smooth structure on the 4-manifold.
These invariants yield obstructions to the
existence of smooth structures on topological 4-manifolds, they can
rule out that certain smooth 4-manifolds carry an Einstein metric, and
they yield Mostow rigidity for compact quotients of complex hyperbolic space.
On complex surfaces they can be calculated with reasonable effort, and
techniques such as gluing formulas allow their calculation on many more spaces.
It can also be shown that symplectic 4-manifolds have non-trivial
Seiberg-Witten invariants.
The goal of the seminar is to learn the definition of these invariants which
relies on gauge theoretical methods. We want to learn
how to calculate them on complex surfaces, and to study the
applications mentioned above.
The invariants are also strongly linked to Gromov-Witten
invariants, quantum cohomology and Seiberg-Witten-Floer theory, theories
that we do not plan to cover in the seminar.
Particpants should have a solid knowledge in differential geometry,
including the most important properties of Dirac operators.
Course description Zeit und Raum der Veranstaltung
Mo 16-18
Art der Veranstaltung
Seminar
Zeit und Raum des Tutoriums
Di 10-12, M119
Link zur Webseite (des/der Dozenten/in, der Veranstaltung)
Zielgruppen
Master, Doktoranden
Anmeldedetails
Anmeldung per Email bis 15.8.2012, danach Vortragsverteilung,
Master-Studenten sollten das Seminar in Flex-Now registrieren.
Prüfungsbestandteile
Vortrag, Master-Studenten müssen eine schriftliche Ausarbeitung erstellen
Termine und Dauer von Prüfung und erster Wiederholungsprüfung
Vortrag
Anmeldeverfahren und Termine zu den Prüfungsbestandteilen
Per Email bis 15.8.2012
Liste der Module
MSem, MV
Leistungspunkte
6