Impressum

Datenschutz


Seiberg-Witten theory
Bernd Ammann und Nicolas Ginoux

Semester
WiSe 2012 / 13

Inhaltsangabe / Literatur / empfohlene Vorkenntnisse
Seiberg-Witten invariants are a very efficient tool for understanding topological and geometrical properties of compact 4-dimensional manifolds. If b2+>1, then these invariants only depend on the smooth structure on the 4-manifold. These invariants yield obstructions to the existence of smooth structures on topological 4-manifolds, they can rule out that certain smooth 4-manifolds carry an Einstein metric, and they yield Mostow rigidity for compact quotients of complex hyperbolic space. On complex surfaces they can be calculated with reasonable effort, and techniques such as gluing formulas allow their calculation on many more spaces. It can also be shown that symplectic 4-manifolds have non-trivial Seiberg-Witten invariants. The goal of the seminar is to learn the definition of these invariants which relies on gauge theoretical methods. We want to learn how to calculate them on complex surfaces, and to study the applications mentioned above. The invariants are also strongly linked to Gromov-Witten invariants, quantum cohomology and Seiberg-Witten-Floer theory, theories that we do not plan to cover in the seminar. Particpants should have a solid knowledge in differential geometry, including the most important properties of Dirac operators.

Course description English

Zeit und Raum der Veranstaltung
Mo 16-18

Art der Veranstaltung
Seminar

Zeit und Raum des Tutoriums
Di 10-12, M119

Link zur Webseite (des/der Dozenten/in, der Veranstaltung)

Zielgruppen
Master, Doktoranden

Anmeldedetails
Anmeldung per Email bis 15.8.2012, danach Vortragsverteilung, Master-Studenten sollten das Seminar in Flex-Now registrieren.

Prüfungsbestandteile
Vortrag, Master-Studenten müssen eine schriftliche Ausarbeitung erstellen

Termine und Dauer von Prüfung und erster Wiederholungsprüfung
Vortrag

Anmeldeverfahren und Termine zu den Prüfungsbestandteilen
Per Email bis 15.8.2012

Liste der Module
MSem, MV

Leistungspunkte
6