Numerik partieller Differentialgleichungen/ Numerical methods for partial differential equationsLuise Blank
SemesterWiSe 2013 / 14
Partielle Differentialgleichungen sind ein Hauptbestandteil der Modellierung von physikalischen, chemischen und biologischen Phänomenen in mehreren Raumdimensionen bzw. in Raum und Zeit.
In der Vorlesung werden numerischen Methoden zur Lösung von
partiellen Differentialgleichungen besprochen. Insbesondere werden
Finite-Differenzen Verfahren und
Finite-Element Methoden eingeführt
und analysiert.
Für die Anwendung dieser Verfahren werden
schwerpunktmäßig elliptische Probleme betrachtet.
Aspekte wie die Behandlung der auftretenden
linearen Gleichungssysteme und adaptive Techniken werden ebenfalls vorgestellt.
Abschließend werden Zeitdiskretisierungen angesprochen.
Zusätzlich zu den rechentechnischen Betrachtungen in der Vorlesung werden die vorgestellten Methoden in den Übungen basierend auf Matlab implementiert und numerisch analysiert. Hierzu wird ein Programmierpraktikum angeboten.
(Kenntnisse in Matlab werden nicht vorausgesetzt).
Literatur:
Zeit und Raum der VeranstaltungMo 14-16, Mi 10-12, M103
Art der VeranstaltungVorlesung
Zeit und Raum der Übung(en)Di 12-14, M101
Link zur Webseite (des/der Dozenten/in, der Veranstaltung)
ZielgruppenBachelor, Master, Lehramt Gymnasium, Computational Science, Studienbegleitende IT-Ausbildung,
Ergänzungsfach für Physik
Anmeldedetailszu den Übungen in der ersten Vorlesung
zu der Prüfung über FlexNow
PrüfungsbestandteilePrüfungsvorleistung: siehe unbenoteter Leistungsnachweis
Mündliche Prüfung.
Termine und Dauer von Prüfung und erster Wiederholungsprüfung30-minütige mündliche Prüfung nach Vereinbarung in der vorlesungsfreien Zeit
Termin und Dauer der zweiten Wiederholungsprüfung30-minütige mündliche Prüfung nach Absprache
Anmeldeverfahren und Termine zu den Prüfungsbestandteilenüber FlexNow bis zwei Wochen vor der Prüfung
Bedingungen für einen unbenoteten Leistungsnachweis50% der Übungspunkte sowohl in den theoretischen Aufgaben als auch in den Programmieraufgaben;
aktive Teilnahme am Übungsbetrieb.
Die für die IT-Ausbildung relevanten Aufgaben werden gekennzeichnet.
Für BPraMa, BV, CS-B-Math3, CS-B-Math4 werden nur benotete Leistungsnachweise vergeben.
Liste der ModuleBPraMa, BV, MV, MAngAn, RZ-M33, RZ-M61, CS-B-Math3
Leistungspunkte9