Applied Algebraic Topology: Exercises

Prof. Dr. C. Löh/M. Uschold

Quick check A (simplicial homology: summary). Recall the construction of simplicial homology, different strategies for the computation of simplicial homology, and applications of simplicial homology.

Quick check B (long-term persistence?). Let $X \subset \mathbb{R}^{N}$ be a finite set, let $\left(\varepsilon_{n}\right)_{n \in \mathbb{N}}$ be an increasing sequence in $\mathbb{R}_{>0}$ with $\lim _{n \rightarrow \infty} \varepsilon_{n}=\infty$. What can be said about $b_{k}^{i, j}\left(X, d_{2}, \varepsilon_{*}\right)$ for "large" j ?
Quick check C (the graded ring $\mathbb{Z}[T]$). Show that not every homogeneous ideal (i.e., generated by homogeneous elements) in $\mathbb{Z}[T]$ is principal. Here, we consider the grading of $\mathbb{Z}[T]$ given by the usual degree of polynomials.
Quick check D (elementary divisors). Determine the elementary divisors of the \mathbb{Z}-module $\mathbb{Z} /(2) \oplus \mathbb{Z} /(3) \oplus \mathbb{Z} /(9) \oplus \mathbb{Z} /(81) \oplus \mathbb{Z} /(25) \oplus \mathbb{Z} /(25)$.

Exercise 1 (filtrations from functions; 3 credits). Is the following statement true? Justify your answer with a suitable proof or counterexample.

If X is a finite simplicial complex and $f: X \longrightarrow \mathbb{N}$ is a map, then the preimages sequence $\left(f^{-1}(\{0, \ldots, n\})\right)_{n \in \mathbb{N}}$ are a filtration of X.
Exercise 2 (persistent Betti numbers; 3 credits). Let X be the following subset of \mathbb{R}^{2} :

Let $\varepsilon_{*}:=(0.1,1.1,2.1,100,101,102, \ldots)$. Compute the persistent Betti numbers $b_{1}^{i, j}\left(X, d_{2}, \varepsilon_{*} ; \mathbb{Q}\right)$ for all $(i, j) \in\{(1,1),(1,2),(1,3)\}$.
Exercise 3 (homogeneous elements; 3 credits). Let R be a graded principal ideal domain. Show one of the following:

1. If $f, g, h \in R$ with $f=g \cdot h$ and $f \neq 0$ is homogeneous, then g and h are homogeneous.
2. If M is a graded R-module and $x \in M$ is homogeneous, then the annihilator $\operatorname{Ann}(x):=\{f \in R \mid f \cdot x=0\}$ is a principal ideal that is generated by a homogeneous element of R.

Exercise 4 (sensor networks; 3 credits). Give an example of a sensor network that does not satisfy the sufficient coverage condition, but such that the network still covers the whole fenced region.
Bonus problem (zigzag persistence; 3 credits). What is zigzag persistence? What is the structure theorem for zigzag persistence and on which theory is it based? As always: Cite all sources!

Submission before January 20, 2023, 8:30, via GRIPS (in English or German)
The Quick checks are not to be submitted and will not be graded; they will be solved and discussed in the exercise class on January 19, 2023.

