Applied Algebraic Topology: Exercises

Prof. Dr. C. Löh/M. Uschold

Sheet 12, January 20, 2023

Quick check A (barcodes). Draw a "random" (or not) finite set of points in \mathbb{R}^2 . What barcodes (over \mathbb{Q}) you would expect for a given sequence of radii?

Quick check B (graded modules). Let K be a field and let M be a finitely generated graded torsion K[T]-module. What can be said about $(T+1) \cdot M$?

Quick check C (barcodes and disjoint unions). How can the barcode of persistent homology of the disjoint union of two filtered finite simplicial complexes be computed from the individual barcodes?

Exercise 1 (persistent Betti numbers; 3 credits). Let K be a field and let (C^*, f^*) be a persistence K-chain complex of finite type. Let $i, j \in \mathbb{N}$ with $i \leq j$ and let $k \in \mathbb{N}$. Is the following statement true? Justify your answer with a suitable proof or counterexample.

If
$$b_k^{(i,j)}(C^*, f^*) = 0$$
, then $b_k^{(i+2022,j)}(C^*, f^*) = 0$.

Exercise 2 (graded structure; 3 credits). Let $\varphi \colon \bigoplus_{j=1}^{6} \Sigma^{j} \mathbb{F}_{2}[T] \longrightarrow \bigoplus_{j=1}^{5} \Sigma^{j} \mathbb{F}_{2}[T]$ =: *F* be the homomorphism of graded $\mathbb{F}_{2}[T]$ -modules given by the matrix

(1)	T	T^2	T^3	T^4	0 \	
0	0	T	0	T^3	T^4	
0	0	0	0	T^2	T^3	
0	0	0	1	0	T^2	
$\setminus 0$	0	0	0	1	T	

Determine a graded decomposition of $F/\operatorname{im}\varphi$ as in the structure theorem.

Exercise 3 (persistent eight; 3 credits). We consider the following finite subset of \mathbb{R}^2 and $\varepsilon_* := (n \cdot \varepsilon')_{n \in \mathbb{N}}$, where ε' is roughly the minimal distance between any of the two points. What do you expect for the barcode of the Rips complexes $R_{\varepsilon_*}(X, d_2)$ (connected by inclusion) with Q-coefficients? Justify your answer!

Bonus problem (applications of persistent homology; 3 credits). Find three research papers that describe (different) applications of persistent homology outside of mathematics and appeared after 2017.

Submission before January 27, 2023, 8:30, via GRIPS (in English or German) The Quick checks are not to be submitted and will not be graded; they will be solved and discussed in the exercise class on January 26, 2023.