Applied Algebraic Topology: Exercises

Prof. Dr. C. Löh/M. Uschold

Sheet 13, January 27, 2023

Quick check A (homogeneous matrix reduction via rows). Formulate a rowversion of the homgeneous matrix reduction. Explain how to read off elementary divisors and graded module decompositions from the result.

Quick check B (persistent homology). Compute the barcode of persistent homology in degree 1 over a field of the following three-step filtration of $\Delta(2)$:

Exercise 1 (empty barcodes; 3 credits). Let K be a field and let (C^*, f^*) be a persistence K-chain complex of finite type with $C_k^n \not\cong 0$ for all $n, k \in \mathbb{N}$. Is the following statement true? Justify your answer with a suitable proof or counterexample.

There exists a $k \in \mathbb{N}$ such that the barcode for persistent homology of (C^*, f^*) in degree k is non-empty.

Exercise 2 (persistent homology; 3 credits). Compute the barcode of persistent homology in degree 1 over a field of the following four-step filtration:

Exercise 3 (persistent homology, reverse engineering; 3 credits). Give a filtration of a simplicial complex with four vertices whose persistent homology in degree 1 over \mathbb{Q} has the barcode (1, 4), (2, 2), (2, 0). Justify your answer!

Exercise 4 (a modified homogeneous matrix reduction algorithm; 3 credits). Show that the following algorithm results in a reduced graded matrix. How can one read off a graded decomposition for $\bigoplus_{j=1}^{r} \Sigma^{n_j} K[T] / \operatorname{im} A$ from the resulting matrix? Justify your answer!

Given a field K, numbers $r, s \in \mathbb{N}$, monotonically increasing sequences n_1, \ldots, n_r , $m_1, \ldots, m_s \in \mathbb{N}$, and an (n_*, m_*) -graded matrix $A \in M_{r \times s}(K[t])$, do:

• For each k from 1 up to s (in ascending order):

Let $\ell := \log_A(k)$.

If $\ell \neq 0$, then:

- For each j from ℓ down to 1 (in descending order): If $\log_A(k) = j$ and there exists $k' \in \{1, \ldots, k-1\}$ with $\log_A(k') = j$, then: Update the matrix A by subtracting $A_{jk}/A_{jk'}$ -times the column k' from column k.
- Return the resulting matrix A.

Bonus problem (persistent homology, implementation; 3 credits). Use a publicly available persistent homology library in a programming language of your choice to solve Exercise 2 over \mathbb{Q} or over \mathbb{F}_2 . Document your code/solution!

Submission before February 3, 2023, 8:30, via GRIPS (in English or German) The Quick checks are not to be submitted and will not be graded; they will be solved and discussed in the exercise class on February 2, 2023. This is the last regular exercise sheet.