Applied Algebraic Topology: Exercises

Prof. Dr. C. Löh/M. Uschold

Sheet 7, December 2, 2022

Quick check A (simplicial homology of simplicial intervals). Compute $H_{n}\left([0, N]_{\Delta}\right)$ for all $n, N \in \mathbb{N}$.
Quick check B (simplicial homology of the hollow square). Compute the simplicial homology (in all degrees) of the following simplicial complex:

Quick check C (simplicial homology of not so hollow squares). Compute the simplicial homology (in all degrees) of the following simplicial complexes:

Exercise 1 (trivial simplicial homology; 3 credits). Is the following statement true? Justify your answer with a suitable proof or counterexample.

There exists an infinite simplicial complex X that satisfies $H_{n}(X) \cong_{\mathbb{Z}} 0$ for all $n \in \mathbb{N}_{>0}$.

Exercise 2 (simplicial homology of the simplicial 2-sphere; 3 credits). Compute $H_{n}(S(2))$ for all $n \in \mathbb{N}$.

Exercise 3 (simplicial homology of the simplicial Möbius strip; 3 credits). Give a triangulation of the (closed) Möbius strip and compute the simplicial homology of this simplicial complex. Illustrate!
Exercise 4 (simplicial homology in degree $0 ; 3$ credits). Let X be a finite simplicial complex with m connected components. Show that $H_{0}(X) \cong_{\mathbb{Z}} \mathbb{Z}^{m}$.

Bonus problem (custom-made simplicial complex; 3 credits). Give an example of a finite simplicial complex X with

$$
H_{0}(X) \cong_{\mathbb{Z}} \mathbb{Z} \quad \text { and } \quad H_{1}(X) \cong_{\mathbb{Z}} \mathbb{Z} / 2022 \quad \text { and } \quad H_{2022}(X) \cong_{\mathbb{Z}} \mathbb{Z}
$$

Prove that your example does have this property!
Bonus problem (Nikolausaufgabe; 3 credits). The Blorx Building Trust once more has won the bid to construct the Haus des Nikolaus. The construction turned out to be cheap, but also somewhat lacking: Blorx only delivered the set

$$
\{(0,0),(1,0),(1,1),(0,1),(0.5,2)\} \subset\left(\mathbb{R}^{2}, d_{2}\right)
$$

of vertices, the brand-new Čech-Complex-Constructor ${ }^{\mathrm{TM}}$, and the instruction: Setting the radius appropriately will maximise your homological experience!

Which radii lead to the biggest (in terms of rank) simplicial homology of the corresponding Čech complexes in degree 1? Justify your answer!

Submission before December 9, 2022, 8:30, via GRIPS (in English or German)
The Quick checks are not to be submitted and will not be graded; they will be solved and discussed in the exercise class on December 8, 2022.

