Applied Algebraic Topology: Exercises

Prof. Dr. C. Löh/M. Uschold

Sheet 8, December 9, 2022

The Python library simplicial ("Simplicial topology in Python") and its documentation are available at https://simplicial.readthedocs.io/en/latest/index.html.
Quick check \mathbf{A} (Mayer-Vietoris sequence). Compute $H_{n}(S(2))$ for all $n \in \mathbb{N}$ inductively via the Mayer-Vietoris sequence, starting from a 2 -simplex and then adding one 2 -simplex at a time.

Quick check B (Smith normal form). Compute the Smith normal form (over \mathbb{Z}) of the following matrix:

$$
\left(\begin{array}{cccc}
2 & 3 & 7 & 1 \\
3 & 1 & -2 & 1 \\
1 & 0 & 2 & 3
\end{array}\right)
$$

Quick check C (algorithmic computation of simplicial homology). Compute the \mathbb{F}_{2}-Betti numbers of the simplicial complexes on Sheet 7, using the simplicial library for Python.

Exercise 1 (simplicial homology of unions; 3 credits). Is the following statement true? Justify your answer with a suitable proof or counterexample.

If X and Y are finite simplicial complexes, then

$$
b_{2}(X \cup Y ; \mathbb{Z})=b_{2}(X ; \mathbb{Z})+b_{2}(Y ; \mathbb{Z})-b_{2}(X \cap Y ; \mathbb{Z}) .
$$

Exercise 2 (homology of simplicial spheres; 3 credits). Let $d \in \mathbb{N}_{>0}$. Compute the homology $H_{n}(\Delta(d+1), S(d))$ for all $n \in \mathbb{N}$ directly from the definition. Use this result to compute $H_{n}(S(d))$ for all $n \in \mathbb{N}$.
Exercise 3 (an alternating sum of binomial coefficients via homology; 3 credits). Let $d \in \mathbb{N}$. Use the computation of $H_{n}(\Delta(d))$ for all $n \in \mathbb{N}$ to show that

$$
\sum_{k=1}^{d+1}(-1)^{k-1} \cdot\binom{d+1}{k}=1
$$

Exercise 4 (barycentric subdivision in the Python library simplicial; 3 credits). What does the method SimplicialComplex.barycentricSubdivide(simplex) from the Python library simplicial do? Give a mathematical definition of this subdivision. Illustrate!
Bonus problem (simplicial products in Python; 3 credits). Write a Python method that computes the simplicial product of two finite simplicial complexes. Use this method to compute the \mathbb{F}_{2}-Betti numbers of $S(1) \boxtimes \Delta(0), S(1) \boxtimes \Delta(1)$, $S(1) \boxtimes S(1)$, and $S(1) \boxtimes S(2)$. Document your code!

Submission before December 16, 2022, 8:30, via GRIPS (in English or German) The Quick checks are not to be submitted and will not be graded; they will be solved and discussed in the exercise class on December 15, 2022.

