**Aufgabe 1** (Auflösbarkeit durch Radikale). Sei  $f \in \mathbb{Q}[T]$  ein normiertes Polynom und sei G die Galoisgruppe von f über  $\mathbb{Q}$ . Welche der folgenden Aussagen sind in dieser Situation immer wahr? Begründen Sie Ihre Antwort (durch einen Beweis oder ein geeignetes Gegenbeispiel)!

- 1. Ist |G| = 2048, so ist f über  $\mathbb{Q}$  durch Radikale auflösbar.
- 2. Ist deg f=2048, so ist f über  $\mathbb Q$  durch Radikale auflösbar.

## Aufgabe 2 (Triangulatur des Quadrats).

- 1. Zeigen Sie algebraisch, dass man aus den vier Ecken des Einheitsquadrats in  $\mathbb C$  mit Zirkel und Lineal ein gleichseitiges Dreieck mit demselben Flächeninhalt konstruieren kann.
- 2. Beschreiben Sie geometrisch wie man mit Zirkel und Lineal aus den vier Ecken des Einheitsquadrats in  $\mathbb C$  ein gleichseitiges Dreieck mit demselben Flächeninhalt konstruieren kann.





## Aufgabe 3 (Winkeldreiteilung).

- 1. Geben Sie eine präzise Definition von "konstruierbaren Winkeln" (mit Zirkel und Lineal) und der "Konstruierbarkeit der Winkeldreiteilung mit Zirkel und Lineal".
- 2. Zeigen Sie: Im allgemeinen ist *nicht* für jeden mit Zirkel und Lineal konstruierbaren Winkel auch die zugehörige Winkeldreiteilung mit Zirkel und Lineal konstruierbar.

**Aufgabe 4** (Rarität von Einheitswurzeln). Sei  $L \mid \mathbb{Q}$  eine endliche Körpererweiterung. Zeigen Sie, dass L nur endlich viele Einheitswurzeln enthält. Hinweis. Was passiert mit  $\varphi(n)$  für  $n \to \infty$ ?!

Bonusaufgabe (Skript). Finden Sie so viele Fehler im Skript wie möglich!