Algebra: Übungen

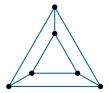
Prof. Dr. C. Löh/F. Hofmann

Blatt 2 vom 24. Oktober 2025

Hinweis. Die Fingerübungen werden nicht abgegeben und nicht korrigiert. Sie werden teilweise in den Übungsgruppen besprochen und können zum "Aufwärmen" beim täglichen Üben verwendet werden.

Fingerübung A (Wiederholung: universelle Eigenschaften). Wiederholen Sie die Konstruktion und die universelle Eigenschaft von *Quotientenvektorräumen* aus der Linearen Algebra.

Fingerübung B (die symmetrische Gruppe S_3 , anschaulich). Beschriften Sie die Knoten des abgebildeten Graphen so mit den Elementen von S_3 , dass Elemente $x, y \in S_3$ genau dann durch eine Kante miteinander verbunden sind, wenn es ein $\sigma \in \{(1\ 2), (1\ 2\ 3), (1\ 3\ 2)\}$ mit $x = y \cdot \sigma$ gibt.



Fingerübung C (Matrixgruppen).

- 1. Sei $n \in \mathbb{N}$. Bildet die Menge der invertierbaren Matrizen in $\mathrm{GL}_n(\mathbb{C})$ in Jordan-Normalform einen Normalteiler in $\mathrm{GL}_n(\mathbb{C})$?
- 2. Sei K ein Körper und $n \in \mathbb{N}$. Wie kann man aus dem Gauß-Algorithmus ein Erzeugendensystem für $\mathrm{GL}_n(K)$ extrahieren?

Fingerübung D (Gruppen für Neandertaler). Erklären Sie

- den Begriff der Gruppe,
- $\bullet\,$ den Begriff des Normalteilers,
- die universelle Eigenschaft von Quotientengruppen,

indem sie nur einsilbige Wörter verwenden!

Aufgabe 1 (Ordnung in der symmetrischen Gruppe S_3 ; 4 (=2+2) Punkte). Wir betrachten die Permutationen $\sigma := (3\ 2\ 1)$ und $\tau := (2\ 3)$ in S_3 .

- 1. Schreiben Sie (1 3) als ein Produkt in S_3 , das nur σ und τ als Faktoren enthält (jeweils möglicherweise mehrfach).
- 2. Zeigen Sie mit dem Satz von Lagrange, dass $\{\sigma, \tau\}$ ein Erzeugendensystem von S_3 ist.

Aufgabe 2 ((Ur)Bilder von Normalteilern; 4 (=2+2) Punkte). Seien G, H Gruppen und sei $f: G \longrightarrow H$ ein Gruppenhomomorphismus. Welche der folgenden Aussagen sind in dieser Situation immer wahr? Begründen Sie Ihre Antwort!

- 1. Ist $N \subset G$ ein Normalteiler in G, so ist f(N) ein Normalteiler in H.
- 2. Ist $N \subset H$ ein Normalteiler in H, so ist $f^{-1}(N)$ ein Normalteiler in G.

Aufgabe 3 (Untergruppen vom Index 2; 4 (=2+2) Punkte).

- 1. Sei G eine Gruppe und sei $H \subset G$ eine Untergruppe vom Index 2. Zeigen Sie, dass H bereits ein Normalteiler in G ist.
- 2. Äußerst nützliche (?!) Folgerung: Sei G eine endliche Gruppe mit #G = 4058. Zeigen Sie, dass jede Untergruppe H von G mit $\#H \ge 42$ bereits ein Normalteiler von G ist.

Aufgabe 4 (Untergruppen von \mathbb{Q} von endlichem Index; 4 (=2+2) Punkte). Sei H eine Untergruppe der additiven Gruppe \mathbb{Q} von endlichem Index. Zeigen Sie, dass $H = \mathbb{Q}$ gilt, indem Sie wie folgt vorgehen:

1. Verwenden Sie den Satz von Lagrange, um zu zeigen, dass es ein $n \in \mathbb{N}_{>0}$ mit folgender Eigenschaft gibt:

$$\forall_{x \in \mathbb{Q}} \quad n \cdot x \in H.$$

Hinweis. Auf welche Gruppe wendet man welche Version des Satzes von Lagrange an?!

2. Folgern Sie daraus, dass $H = \mathbb{Q}$ ist.

Bonusaufgabe (unfrei! 4 (=2+2) Punkte). Lesen Sie den Anhang über freie Gruppen im Skript.

- 1. Zeigen Sie, dass die Gruppe $\mathbb{Z}/2025$ nicht frei ist.
- 2. Zeigen Sie, dass die Gruppe \mathbb{Z}^{2025} nicht frei ist.