Prof. Dr. C. Löh/F. Hofmann

Hinweis. Die Fingerübungen werden nicht abgegeben und nicht korrigiert. Sie werden teilweise in den Übungsgruppen besprochen und können zum "Aufwärmen" beim täglichen Üben verwendet werden.

Fingerübung A (Wiederholung: Produkte, direkte Summen). Wiederholen Sie die Konstruktion von *direkten Produkten* und *direkten Summen* von Vektorräumen bzw. Moduln in der linearen Algebra. Welche universellen Eigenschaften haben diese Konstruktionen?

Fingerübung B (Quotientengruppen). Geben Sie ein Beispiel für eine Gruppe, die sowohl eine Quotientengruppe isomorph zu $\mathbb{Z}/2025$ als auch eine Quotientengruppe isomorph zu S_{2025} besitzt.

Fingerübung C (Gruppoku). Vervollständigen Sie die untenstehende Tabelle so, dass sich eine Verknüpfungstabelle für eine Gruppe mit den acht (verschiedenen) Elementen x, a, b, c, X, A, B, C ergibt.

	X	а	b	С	Χ	Α	В	C
Х	X							
a		Χ	С			X		
b		С	Χ					
С				Χ				
Χ					Х			
Α								
В								
C								

Ist diese Gruppe isomorph zu $\mathbb{Z}/8$, $\mathbb{Z}/2 \times \mathbb{Z}/4$, $\mathbb{Z}/2 \times \mathbb{Z}/2 \times \mathbb{Z}/2$, D_4 ?

Fingerübung D (D_5). Enthält D_5 einen Normalteiler N mit #N=2?

Hinweis. Die Wiederholungsaufgaben sind freiwillig, können aber gut zur Wiederholung und als Bonuspunkte genutzt werden.

Bonusaufgabe (Wiederholung) (Gleichungen in Gruppen; 2 (= 1 + 1) Punkte). Sei (G, \cdot, e) eine Gruppe. Welche der folgenden Aussagen sind in dieser Situation immer wahr? Begründen Sie Ihre Antwort!

- 1. Für alle $q, h \in G$ gibt es ein $x \in G$ mit $x \cdot q \cdot x^{-1} = h$.
- 2. Für alle $g, h \in G$ gibt es ein $x \in G$ mit $g \cdot x \cdot h = h \cdot g$.

Hinweis. Achten Sie beim Aufschreiben auf präzise und verständliche Formulierungen. Der Leser soll lesen, nicht dechiffrieren.

Aufgabe 1 (Diedergruppen; 4 (=0+2+2) Punkte). Sei $n \in \mathbb{N}_{>3}$.

- 0. Wiederholen Sie den Begriff der $Diedergruppe D_n$. Welche geometrische Relevanz hat sie?
- 1. Zeigen Sie, dass D_n zu einer Untergruppe von S_n isomorph ist. Hinweis. Verwenden Sie die geometrische Beschreibung von D_n .
- 2. Sei $\varphi \colon D_n \longrightarrow S_n$ der in der ersten Teilaufgabe konstruierte injektive Gruppenhomomorphismus. Ist die durch φ definierte Gruppenoperation von D_n auf $\{1,\ldots,n\}$ frei? Ist sie transitiv? Begründen Sie jeweils Ihre Antwort!

Aufgabe 2 (Quotientengruppen; 4 (=2+2) Punkte). Seien G und G' Gruppen und seien $N \subset G$, $N' \subset G'$ Normalteiler in G bzw. G'. Welche der folgenden Aussagen sind in dieser Situation immer wahr? Begründen Sie Ihre Antwort!

- 1. Ist $N \cong_{\mathsf{Group}} N'$ und $G/N \cong_{\mathsf{Group}} G'/N'$, so folgt $G \cong_{\mathsf{Group}} G'$.
- 2. Ist $G \cong_{\mathsf{Group}} G'$ und $N \cong_{\mathsf{Group}} N'$, so folgt $G/N \cong_{\mathsf{Group}} G'/N'$.

Aufgabe 3 (semi-direkte Produkte; 4 (=0+1+2+1) Punkte). Seien N, Q Gruppen und sei $\varphi \colon Q \longrightarrow \operatorname{Aut}(N)$ ein Gruppenhomomorphismus.

- 0. Wiederholen Sie die Konstruktion des semi-direkten Produkts $N \rtimes_{\varphi} Q$.
- 1. Zeigen Sie, dass (e, e) das neutrale Element von $N \rtimes_{\varphi} Q$ ist.
- 2. Zeigen Sie: Ist $(n,q)\in N\rtimes_{\varphi}Q$, so ist $(\varphi(q^{-1})(n^{-1}),q^{-1})$ das Inverse von (n,q) in $N\rtimes_{\varphi}Q$.
- 3. Geben Sie ein Beispiel, das zeigt, dass im allgemeinen (n^{-1}, q^{-1}) nicht das Inverse von (n, q) in $N \rtimes_{\varphi} Q$ ist.

Aufgabe 4 (spaltende Erweiterungen; 4 (=2+2) Punkte).

1. Sei G eine Gruppe, sei $N\subset G$ ein Normalteiler und sei Q:=G/N, mit kanonischer Projaktion $\pi\colon G\longrightarrow G/N=Q$. Es gebe einen Gruppenhomomorphismus $s\colon Q\longrightarrow G$ mit $\pi\circ s=\mathrm{id}_Q$. Zeigen Sie: Dann gibt es einen Gruppenhomomorphismus $\varphi\colon Q\longrightarrow \mathrm{Aut}(N)$ mit

$$G \cong_{\mathsf{Group}} N \rtimes_{\varphi} Q.$$

2. Folgern Sie: Ist K ein Körper und $n \in \mathbb{N}_{\geq 1}$, so gibt es einen Gruppenhomomorphismus $\varphi \colon K^{\times} \longrightarrow \operatorname{Aut}(\operatorname{SL}_n(K))$ mit

$$\operatorname{GL}_n(K) \cong_{\mathsf{Group}} \operatorname{SL}_n(K) \rtimes_{\varphi} K^{\times}.$$

Bonusaufgabe (Formalisierung von Gruppen; 4 (=2+2) Punkte). Erweitern Sie die Lean 4-Datei

https://loeh.app.ur.de/teaching/algebra_ws2526/monoid.lean

um folgendes:

- 1. Ein theorem das formuliert, dass Inverse von invertierbaren Elementen in Monoiden eindeutig sind;
- 2. einen Beweis dieser Aussage.

Hinweis. Falls Sie Lean 4 nicht installieren möchten, können Sie im Browser https://live.lean-lang.org/ verwenden.

Es werden nur Abgaben korrigiert, die via GRIPS als Quellcode-Textdatei abgegeben werden, die vom Lean 4-Interpreter fehlerfrei akzeptiert werden und aussagekräftig dokumentiert sind.