Algebra: Korpererweiterungen?!

Prof. Dr. C. Léh/F. Hofmann Januar 2026

Hinweis. Galoistheorie ist kein Hexenwerk, sondern kann mit etwas Geduld und
Neugierde erlernt werden! Falls Galoistheorie im Moment noch wie im untenste-
henden Bild wirkt, kénnen die folgenden Fragen evtl. dabei helfen, die Gedanken
und die Priifungsvorbereitung in Ruhe zu sortieren.

Don’t panic!

Den Begriff/Satz . ..

e Korpererweiterung habe ich

[ gut [J einigermaflen [ eher nicht [0 Bahnhof!
verstanden und kann ihn in Beispielen/Beweisen

O gut [0 manchmal [J eher nie [J niemals!!
einsetzen.

e algebraisches Element einer Kérpererweiterung habe ich

[ gut [J einigermaflen [ eher nicht [0 Bahnhof!
verstanden und kann ihn in Beispielen/Beweisen

O gut [0 manchmal [J eher nie (1 niemals!!
einsetzen.

e Minimalpolynom eines algebraischen Elements habe ich

O gut [J einigermaflen [ eher nicht [0 Bahnhof!
verstanden und kann ihn in Beispielen/Beweisen

O gut [0 manchmal [J eher nie [J niemals!!
berechnen/einsetzen.

e Grad einer Korpererweiterung habe ich

O gut [J einigermafBen [ eher nicht [0 Bahnhof!
verstanden und kann ihn in Beispielen/Beweisen

O gut [0 manchmal [J eher nie [J niemals!!
berechnen/einsetzen.

e Galoisgruppe einer Korpererweiterung habe ich

[ gut [J einigermafen [ eher nicht [0 Bahnhof!
verstanden und kann ihn in Beispielen/Beweisen
O gut [0 manchmal [J eher nie [J niemals!!

berechnen/einsetzen.



Nemesis Konjugationsprinzip habe ich

O gut [J einigermaflen [ eher nicht
verstanden und kann ihn in Beispielen/Beweisen

O gut [J manchmal [J eher nie
einsetzen.

algebraische Kérpererweiterung habe ich

O gut [J einigermafen [ eher nicht
verstanden und kann ihn in Beispielen/Beweisen

O gut [J manchmal [J eher nie
einsetzen.

transzendente Korpererweiterung habe ich

O gut [J einigermaflen [ eher nicht
verstanden und kann ihn in Beispielen/Beweisen

O gut [0 manchmal [J eher nie
einsetzen.

endliche Kérpererweiterung habe ich

O gut [J einigermaflen [ eher nicht
verstanden und kann ihn in Beispielen/Beweisen

O gut [0 manchmal [J eher nie
einsetzen.

Charakteristik eines Korpers habe ich

O gut [J einigermaflen [ eher nicht
verstanden und kann ihn in Beispielen/Beweisen

O gut [J manchmal [J eher nie
berechnen/einsetzen.

Klassifikation der endlichen Kérper habe ich

O gut [J einigermaflen [ eher nicht
verstanden und kann ihn in Beispielen/Beweisen

O gut J manchmal [J eher nie
berechnen/einsetzen.

Zerfallungskorper habe ich

O gut [ einigermaflen [ eher nicht
verstanden und kann ihn in Beispielen/Beweisen

O gut [J manchmal [J eher nie
berechnen/einsetzen.

algebraischer Abschluss habe ich

O gut [ einigermaflen [ eher nicht
verstanden und kann ihn in Beispielen/Beweisen

O gut [J manchmal [J eher nie
einsetzen.

normale Korpererweiterung habe ich

O gut [J einigermafen [ eher nicht
verstanden und kann ihn in Beispielen/Beweisen
O gut [0 manchmal [J eher nie

einsetzen.
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e separable Kérpererweiterung habe ich

O gut [J einigermaflen [ eher nicht [0 Bahnhof!
verstanden und kann ihn in Beispielen/Beweisen

[ gut [0 manchmal [J eher nie [J niemals!!
einsetzen.

e Galoiserweiterung habe ich

O gut [J einigermaflen [ eher nicht [0 Bahnhof!
verstanden und kann ihn in Beispielen/Beweisen

O gut [0 manchmal [ eher nie [0 niemals!!
einsetzen.

e Hauptsatz der Galoistheorie habe ich

O gut [J einigermaflen [ eher nicht [0 Bahnhof!
verstanden und kann ihn in Beispielen/Beweisen

0 gut [0 manchmal [J eher nie 1 niemals!!
einsetzen.

e Separabilitatsgrad habe ich

O gut [J einigermaflen  [J eher nicht [0 Bahnhof!
verstanden und kann ihn in Beispielen/Beweisen

O gut [0 manchmal [J eher nie [J niemals!!
berechnen/einsetzen.

e Satz vom primitiven Element habe ich

O gut [J einigermaflen [ eher nicht [0 Bahnhof!
verstanden und kann ihn in Beispielen/Beweisen

[ gut [0 manchmal [J eher nie [J niemals!!
einsetzen.

Bei kleinen oder grofleren Liicken und Unsicherheiten helfen wie immer die all-
gemeinen Prinzipien der Erarbeitung: Begriffe und Sétze lernen, Beweisideen
verstehen, Beispiele rechnen, Zusammenhinge zwischen Begriffen/Sétzen/Bei-
spielen erforschen. Beginnen Sie mit den einfachen Dingen (wie mit den unten-
stehenden Aufgaben) und arbeiten Sie sich dann zu den komplizierteren Aspek-
ten durch. Nutzen Sie die Gelegenheit, in den Ubungen Fragen zu stellen! Dann
wird sich die Galoistheorie hoffentlich von ihrer besten Seite zeigen ...
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Aufgaben

Aufgabe 1. Wir betrachten die Zahl v/3 € C und die zugehérige Korpererwei-
terung Q(v/3) | Q.
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10.
11.
12.
13.
14.

Wie lautet die Definition von Q(v/3) ?

Welche Charakteristik hat Q(v/3) ?

Ist das Element /3 algebraisch iiber Q 7

Ist die Korpererweiterung Q(v/3) | Q algebraisch?

Was ist das Minimalpolynom von /3 iiber Q ?

Was ist der Grad [Q(v/3) : Q] ?

Ist Q(v/3) | Q ein Zerfillungskérper eines Polynoms iiber Q ?
Ist die Korpererweiterung Q(v/3) | Q normal?

Ist die Korpererweiterung Q(v/3) | Q separabel?

Was ist [Q(v/3) : Qs ?

Ist die Korpererweiterung Q(v/3) | Q galoissch?

Wie viele Elemente enthilt Gal(Q(v/3), Q) ?

Wie kann man die Elemente von Gal(Q(v/3), Q) explizit beschreiben?
Wieviele Zwischenkorper hat Q(v/3) | Q ?

Losung zu Aufgabe 1

1.
2.
3.

siehe Definition 3.2.4
Als Erweiterungskorper von Q hat Q(v/3) die Charakteristik char Q = 0.
Ja, denn /3 ist eine Nullstelle des Polynoms 72 — 3 € Q[T7] \ Q.

Ja, denn /3 ist algebraisch iiber Q, und damit ist Korollar 3.2.35 anwend-
bar.

Das Minimalpolynom von v/3 iiber Q ist 72 —3, denn v/3 ist eine Nullstelle
dieses Polynoms, das Polynom ist normiert und es ist irreduzibel (Eisen-
stein zur Primzahl 3 € Z; das Eisensteinsche Irreduzibilitétskriterium ist
anwendbar, denn ... ).

Es gilt [Q(v/3) : Q] = 2, denn das Minimalpolynom von /3 iiber Q hat
Grad 2. Somit folgt die Behauptung mit Proposition 3.2.24.

Ja, denn: Das normierte Polynom T2 — 3 zerfillt wegen —v/3 € Q(v/3)
iiber Q(v/3) in Linearfaktoren:

T? —3=(T —V3)- (T +V3).

Wegen Q(v/3) = Q(v/3, —/3), ist somit Q(v/3) | Q ein Zerfillungskorper
von T? — 3 iiber Q.



8. Ja, denn: Wir wissen bereits, dass die Erweiterung algebraisch ist und dass
das Minimalpolynom 72 — 3 von /3 {iber Q iiber Q(\/g) in Linearfaktoren
zerfillt. Mit Proposition 3.4.5 folgt die Behauptung.

9. Ja, denn: Alle algebraischen Korpererweiterungen von Korpern mit Cha-
rakteristik O sind separabel (Beispiel 3.4.9).

10. Da die Korpererweiterung Q(\/g) | Q separabel ist, ist nach Propositi-
on 3.4.11

11. Ja, da sie normal und separabel ist.

12. Nach dem Hauptsatz der Galoistheorie (anwendbar, da ...) ist

#Gal(Q(v3),Q) = [Q(V3) : Q] = 2.

Alternativ kann man diese Anzahl auch mit dem Konjugationsprinzip be-
stimmen.

13. Die Nullstellen des Minimalpolynoms von v/3 in Q(\/g) sind v/3 und —/3.
Daher enthilt Gal(Q(+/3), Q) genau zwei Elemente und diese sind durch

V3— V3 bzw. V3+— —V3

eindeutig bestimmt. Das erste Element stimmt dabei mit idQ( 3) iiberein
(aufgrund der Eindeutigkeit).

14. Wir verwenden den Hauptsatz der Galoistheorie (anwendbar, da ...). Sei
G := Gal(Q(v/3),Q). Wegen #G = 2 ist G SGroup Z/2. Somit besitzt
G genau zwei Untergruppen: die triviale Untergruppe und G. Nach dem
Hauptsatz der Galoistheorie besitzt Q(v/3) | Q somit genau zwei Zwi-
schenkérper:

e Den Zwischen- /Fixkérper zur trivialen Untergruppe: Q(v/3)
e Den Zwischen-/Fixkorper zur Untergruppe G: Q.

Aufgabe 2. Beantworten Sie die entsprechenden Fragen fiir Q(4) | Q.
Hinweis. Das geht wirklich ganz {iberraschungsfrei analog zu Aufgabe 1.

Aufgabe 3. Beantworten Sie die entsprechenden Fragen fiir Q(+/2) | Q.
Hinweis. Die meisten Antworten finden Sie in der Vorlesung/im Skript. Die
Antworten sind anders als in Aufgabe 1.

Aufgabe 4. Beantworten Sie die entsprechenden Fragen fiir Q(v/2, (3) | Q.
Hinweis. Das ist das in der Vorlesung behandelte Beispiel 3.2.41.

Aufgabe 5. Beantworten Sie die entsprechenden Fragen fiir die Korpererwei-
terung Fo[T]/(T? + T + 1) | Fa.

Hinweis. Die Antworten sind sehr analog zu Aufgabe 1. Die Argumente miissen
aber wegen der offensichtlichen Unterschiede (Charakteristik?!) angepasst wer-
den.

Keine Abgabe!



