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Aufgabe 1 (1+ 3 + 3 + 3 = 10 Punkte).

1. Geben Sie die Definition fiir den Begriff des Index einer Untergruppe.
2. Zeigen Sie, dass S5 eine Untergruppe vom Index 24 enthalt.
3. Gibt es einen surjektiven Gruppenhomomorphismus As; — Z/3 7
Begriinden Sie Thre Antwort.
4. Ist fiir jede auflosbare Gruppe G auch G x G auflosbar?
Begriinden Sie Ihre Antwort.
Lésung:
1. Sei G eine Gruppe und sei H C G eine Untergruppe. Die Anzahl (bzw. Kar-
dinalitét)
(G H]:=4{g-H|geG}
der Linksnebenklassen von H in G bezeichnet man als Index von H in G.
2. Sei H die von o := (1 2 3 4 5) erzeugte Untergruppe von S5. Wegen ordo = 5
ist #£H = #(Z/5) = 5.
Mit dem Satz von Lagrange (angewendet auf die Kette {e} C H C G) folgt
#G  #S; 5l
G:Hl=—="—=—=41=24.
[ ) #H ) )
3. Behauptung. Nein, es gibt keinen Gruppenhomomorphismus A5 — 7Z/3, der

surjektiv ist.

Beweis. Angenommen, es gibe einen Gruppenhomomorphismus ¢: A —
7,/3, der surjektiv ist. Mit dem Homomorphiesatz folgt

A5/ker<p gGroup Z/?"

Insbesondere wire dann ker ¢ ein Normalteiler von As mit ker¢ # {e} und
ker p # As. Dies widerspricht der Tatsache, dass die Gruppe As einfach ist.

Also gibt es keinen solchen Gruppenhomomorphismus. O

4. Behauptung. Ja, ist G eine auflosbare Gruppe, so ist auch G x G auflosbar.
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Beweis. Sei m: G x G — G die Projektion auf die zweite Komponente und
N :=kerm. Dann ist N ein Normalteiler von G x G mit N = G x {e} Zgroup G
und der Homomorphiesatz liefert

(G X G)/N gGroup imm = G.

Mit den Vererbungseigenschaften auflosbarer Gruppen folgt somit aus der
Auflésbarkeit von G (die die Auflosbarkeit von N und (G x G)/N nach sich
zieht) auch die Auflosbarkeit von G x G.

[Alternativ kann man auch induktiv die abgeleiteten Gruppen von G x G
berechnen.| O
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Aufgabe 2 (1+ 3 + 3 + 3 = 10 Punkte).

1.
2.

Geben Sie die Definition dafiir, dass ein Ideal eines Ringes prim ist.

Zeigen Sie: Ist R ein Ring und p C R ein Primideal, so ist der Ring R/p
nicht isomorph zum Ring Q x Q.

Ist das Ideal (2- X +2) in Q[X] prim?
Begriinden Sie Thre Antwort.

. Ist das Polynom 7% + T + 1 € Q[T] in Q[T] irreduzibel?

Begriinden Sie Ihre Antwort.

Losung:

1.

Sei R ein Ring. Ein Ideal p C R in R ist prim, wenn p # R ist und

Vewer T-yEp= (xE€pVyEnp).

2. Sei R ein Ring und sei p C R ein Primideal. Dann ist R/p ein Integritétsring.

Der Ring Q xQ ist jedoch kein Integritéitsring, da etwa (1, 0) ein nicht-trivialer
Nullteiler ist: Es gilt (1,0) # (0,0) und (0,1) # (0,0), aber

Behauptung. Ja, das Ideal (2 - X + 2) in Q[X] ist prim.

Beweis. Da 2 eine Einheit in Q[X] ist, folgt (2- X +2) = (X + 1).
Das Polynom X + 1 in Q[X] ist (aus Gradgriinden) irreduzibel.

Da Q[X] als Polynomring iiber einem Korper ein faktorieller Ring (sogar ein
Hauptidealring) ist, ist somit das Ideal (X + 1) ein Primideal in Q[X].

[Alternativ kann man zeigen, dass der Restklassenring Q[X]/(2- X 42) ZRing Q
ein Integritétsring ist, und daraus schlieffen, dass das Ideal prim ist.] ]

4. Behauptung. Ja, das Polynom T° + T + 1 in Q[T ist irreduzibel.
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Beweis. Bs ist Q = Q(Z) und das gegebene Polynom f := T3 + T + 1 liegt
in Z[T] und erfiillt deg f > 0.

Wir verwenden das Reduktionskriterium beziiglich der Primzahl 2 € Z: Die
Primzahl 2 teilt den hochsten Koeffizienten von f nicht und Reduktion mo-
dulo 2 liefert das Polynom

f=T34+T+ 1] € Fo[T).

Das Polynom f ist in Fy[T] nach dem Nullstellenkriterium irreduzibel, denn
deg f = 3 und f besitzt wegen

Fo) =[] #[0] und f([1]) = [1] + [1] + [1] = [1] # [0]

keine Nullstellen in Fo.

Nach dem Reduktionskriterium ist somit f in Q[7'] irreduzibel. O
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Aufgabe 3 (1+ 3 + 3 + 3 = 10 Punkte).

1. Geben Sie die Definition dafiir, dass eine algebraische Korpererweiterung
normal ist.

2. Zeigen Sie, dass die Kérpererweiterung Q(v/2,/3) | Q algebraisch und
normal ist.

3. Ist jede endliche Korpererweiterung von Q normal?

Begriinden Sie Ihre Antwort.

4. Gibt es einen Korper K mit K Z¢oup Z/17 7
Begriinden Sie Thre Antwort.

Losung:

1. Eine algebraische Korpererweiterung L | K ist normal, wenn fiir jedes a € L
das Minimalpolynom von « iiber K bereits in L[T] in Linearfaktoren zerfillt.

2. Die Elemente v/2 und /3 sind algebraisch iiber QQ (als Nullstellen von T2 -2
bzw. T? — 3 € Q[T)).
Also ist die von v/2 und /3 erzeugte Korpererweiterung Q(v/2,v/3) | Q alge-
braisch.

Da T? — 2 und T? — 3 in Q[T normiert und irreduzibel sind (z.B. nach dem
Eisensteinschen Irreduzibilitdtskriterium), handelt es sich dabei bereits um die
Minimalpolynome von v/2 bzw. v/3 iiber Q. Diese zerfallen iiber Q(\/i, \/§)

in Linearfaktoren, denn
T?—2=(T—V2)- (T++V2) und T?—-3=(T—3) (T +3).
Somit ist die von v/2 und /3 erzeugte Korpererweiterung Q(v/2,v3) | Q

normal.

3. Behauptung. Nein, nicht jede endliche Korpererweiterung von Q ist normal.

Beweis. Die Korpererweiterung Q(+/2) | Q ist endlich, da sie von dem iiber Q
algebraischen Element /2 erzeugt wird.

Diese Korpererweiterung ist jedoch nicht normal, denn: Es ist p:= T3 — 2 €
Q[T] das Minimalpolynom von /2 iiber Q (z.B. nach dem Eisensteinschen
Irreduzibilitétskriterium).
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Es ist (3 - v/2 € C eine nicht-reelle Nullstelle von p. Wegen Q(v/2) ¢ R
liegt diese Nullstelle nicht in Q(+/2). Somit zerfillt u iiber Q(3/2) nicht in
Linearfaktoren. Daher ist Q(+/2) | Q nicht normal. O

4. Behauptung. Nein, es gibt keinen Korper K mit K =g qup Z/17.

Beweis. Angenommen, es gébe einen solchen Korper K. Wegen K* = K\ {0}
wére dann

#K =1+ #K* =1+ #(Z/17) = 1+ 17 = 18.

Insbesondere wére K ein endlicher Korper.

Nach der Klassifikation der endlichen Koérper miisste somit #K = 18 eine
Primpotenz sein. Wegen der Primfaktorzerlegung 18 = 2 - 32 ist dies jedoch
nicht der Fall.

Dieser Widerspruch zeigt, dass es keinen solchen Korper K gibt. O



Matrikelnr: [ T T [ [ [ [ | Seite 5,7

Aufgabe 4 (3 + 3 + 4 = 10 Punkte).

1. Formulieren Sie den kleinen Satz von Fermat.
2. Beweisen Sie den kleinen Satz von Fermat.

3. Bestimmen Sie die letzte Ziffer der Dezimaldarstellung von 733

Lésung:
1. Sei p € N prim. Dann gilt
P"'=1 modp
fir alle z € Z mit p 1 z.

[Alternativ konnte man auch die verallgemeinerte Version formulieren:

Sei m € Nyg. Dann gilt
220" =1 mod m

fir alle z € Z mit ggT(z,m) = 1]

2. Beweis. Wir beweisen dies, indem wir die dazu dquivalente Behauptung

Vee@/onoy 2= (1]
in Z/(p) beweisen.

Wir wissen, dass Z/(p) ein Korper ist; insbesondere ist (Z/(p)) \ {0} eine
Gruppe beziiglich Multiplikation mit genau p — 1 Elementen.

Mit dem Satz von Lagrange folgt, dass 2P~ = [1] fiir alle z € Z/(p) \ {0}
gilt. Ol
[Wird im ersten Teil die verallgemeinerte Version formuliert, so ist auch die
verallgemeinerte Version zu beweisen:

Beweis. Wir beweisen die zur Behauptung dquivalente Aussage
Voez ggT(z,m) =1= [2]*"™ = 1]
in Z/(m).
Sei x € Z mit ggT(x,m) = 1. Nach den Eigenschaften der eulerschen -
Funktion ist [x] dann eine Einheit in Z/(m).

AuBlerdem enthélt die Einheitengruppe Z/(m)* von Z/(m) genau ¢(m) Ele-
mente. Mit dem Satz von Lagrange erhalten wir daher in Z/(m):

7 = 1 0
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3. Wir verwenden die verallgemeinerte Version des kleinen Satzes von Fermat:
Es gilt
©(10) = #{1,3,7,9} = 4.

Wegen ggT(7,10) = 1 gilt in Z/(10):
(7] = [7) = [ = ((7))® - (7] = 1° - (7] = [7]

Also ist 7 die letzte Ziffer von 733 im Dezimalsystem.

[Alternativ kann man mit der nicht-verallgemeinerten Version und dem chi-
nesischen Restsatz argumentieren:

o InZ/(2) gilt (da 7 ungerade ist)
[7%] = [71° = [11** = [1].
e In Z/(5) gilt nach dem kleinen Fermat (da 5 prim und ggT(7,5) = 1 ist):
(7] = [7)% = ("% = (1) - (7' = 1 (7] = [7] = [2].

e Wegen ggT(2,5) = 1 liefert der chinesische Restsatz, dass die kanoni-
schen Projektionen einen Ringisomorphismus Z/(10) =Rging Z/(2) xZ/(5)
definieren. Das Urbild von ([1], [2]) unter diesem Isomorphismus ist [7].

Also ist [7%3] = [7] in Z/(10), und damit ist 7 die letzte Ziffer von 733 im
Dezimalsystem.]

[Alternativ kann man auch 33 = 25 + 1 nutzen und [7%%] € Z/(10) durch
iteriertes Quadrieren bestimmen.|

[Alternativ kann man auch mit viel Geduld ausrechnen, dass
75% = 7730993719707444524137094407

ist (keine gute Idee!) und davon die letzte Ziffer als 7 ablesen.]
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Aufgabe 5 (3+ 3 + 3 + 3 = 12 Punkte). Sei @ € C mit
(a—1)'=3
1. Zeigen Sie, dass [Q(«a) : Q] = 4 ist.
2. Zeigen Sie, dass [Q(v/3, ) : Q(a)] = 5 ist.
3. Zeigen Sie, dass # Gal(Q(«), Q) = 2 ist.

4. Ist Q(a) ein Zerfdllungskorper von (T — 1)* — 3 iiber Q ?
Begriinden Sie Thre Antwort.

Lésung:

1. Es bietet sich an, die folgende Voriiberlegung zu machen: Sei g := o — 1. Dann
gilt Q(B) = Q(a) (da —1 € Q) und p* = 3.
Sei u € Q[T'] das Minimalpolynom von # iiber Q. Dann gilt u = T% — 3,
denn dieses Polynom ist normiert, liegt in Q[7'], hat 5 als Nullstelle und ist
iiber Q = Q(Z) irreduzibel (nach dem Eisensteinschen Irreduzibilititskriteri-
um beziiglich der Primzahl 3 in Z).

Also ist [Q(a) : Q] = [Q(B) : Q] = deg = 4.

[Ohne die Voriiberlegung kann man alternativ auch feststellen, dass das Poly-
nom (T —1)* -3 =T*-4-T3+6-T? —4-T — 2 das Minimalpolynom von «
iiber Q ist (nach Eisenstein beziiglich der Primzahl 2 in Z).]

2. Es gilt [Q(v/3) : Q] = 5 (das Minimalpolynom von v/3 iiber Q ist nach Eisen-
stein T° — 3).

Also ist ggT([Q(v/3) : Q],[Q(a) : Q]) = ggT(5,4) = 1. Mit der Gradformel
fiir Komposita ergibt sich somit

[Q(V3,0): Q] = [Q(V3) - Q) : Q] = [Q(V3) : Q] - [Q(ar) : Q] =5 - 4.
Mit der Multiplikativitdt des Grades erhalten wir daraus

[Q(V/3,a) : Q] _5-4

Q@ qQ 4 "

[Q(V3,0) : Q(a)] =
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3. Sei X :={x € Q(B) | u(z) = 0} Nach dem Konjugationsprinzip ist
# Gal(Q(a), Q) = # Gal(Q(B), Q) = #X.
Es gilt

X={zecQp)|az*=3}={V3,-V3,i V3, —i-V3}nQ(B).

Wegen 8 € X konnen wir die folgenden Félle unterscheiden:

® Sei = v/3 (analog: B = —+v/3). Dann ist —3 € X und Q(3) C R.
Insbesondere liegen =i - v/3 nicht in Q(3).
Also ist #X = #{V/3,—V3} = 2.
® Sei f=1i-v/3 (analog: 8 = —+v/3). Dann ist —3 € X.
Nach dem ersten Fall ist ++v/3 nicht in Q(3).
Also ist #X = #{i- V3, —i-v3} =2.
In beiden Féllen ergibt sich also # Gal(Q(«), Q) = 2.
[Da Q(a) | Q keine Galoiserweiterung ist, kann man nicht den Hauptsatz der

Galoistheorie direkt auf die Koérpererweiterung Q(«) | Q anwenden.]

4. Behauptung. Nein, Q(«) ist kein Zerfillungskorper von (T — 1)* — 3 iiber Q.

Beweis. Angenommen, Q(a) wire ein Zerfiallungskérper von (T — 1)* — 3
iiber Q. Dann wére Q(«) | Q eine endliche Galoiserweiterung (endlich nach
dem ersten Teil, normal nach der Annahme, separabel aufgrund von Charak-
teristik 0).

Dann wére (nach den Berechnungen im ersten bzw. dritten Teil)

4=[Q(a) : Q) = #Gal(Q(), Q) =2,

was nicht sein kann. OJ
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Aufgabe 6 (2 + 3+ 3 = 8 Punkte). Sei L | K eine endliche Galoiserweiterung,
sei G := Gal(L, K) und es gelte #G = 75.
1. Bestimmen Sie die Anzahl der 5-Sylowgruppen von G.
Begriinden Sie Thre Antwort.

2. Zeigen Sie, dass es genau einen Zwischenkoérper M von L | K gibt, der
[M : K] = 3 erfiillt.

3. Zeigen Sie, dass es ein Element in L gibt, dessen Minimalpolynom iiber K
den Grad 15 besitzt.

Losung:
1. Sei s5 die Anzahl der 5-Sylowgruppen von . Nach den Sylowsétzen gilt
ss=1 modb5 und s5]75,

und damit s5 € {1,6,11,16,...} N {1,3,5,15,25,75} = {1}. Also ist s5 = 1.
[Behauptungen wie ,,Es gibt eine 5-Sylowgruppe in G.“ 0.4. geben den Sach-

verhalt nicht vollstdndig wieder. Korrekt wire in diesem Fall ,Es gibt genau
eine 5-Sylowgruppe in G.“ Dies ist ein fundamentaler Unterschied.]

2. Ist M ein Zwischenkorper von L | K, so gilt (da L | K und L | M endliche
Galoiserweiterungen sind)

IL:K]  #Gal(L,K)

M K] = 173 = #Gal(L, M)

=[G : Gal(L, M)].

Nach dem Hauptsatz der Galoistheorie ist die Anzahl der Zwischenkorper M
von L | K mit [M : K] = 3 also genau die Anzahl der Untergruppen H von G
mit [G : H] = 3.

Nach dem Satz von Lagrange stimmt letztere Anzahl mit der Anzahl der
Untergruppen H von G mit #H = 75/3 = 25 iiberein.

Wegen 75 = 3-52 ist diese Anzahl also die Anzahl aller 5-Sylowgruppen von G.
Nach dem ersten Teil ist diese Anzahl 1.

[Oft wurde nur die Existenz gezeigt oder eine Mischversion, bei der nicht klar
war, ob Existenz oder Eindeutigkeit gezeigt wird (da nicht deutlich gesagt
wurde, was vorausgesetzt wird und was konstruiert wird).]
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3. Wegen #G = 75 = 3 - 5% enthilt G nach dem Satz von Cauchy ein Element g
der Ordnung 5. Sei H := (g9)¢. Dann ist H =group Z/5, und damit #H = 5.

Nach dem Hauptsatz der Galoistheorie gibt es einen Zwischenkorper M von L |
K mit (namlich M = L)

MoK =[G H =T8T

=2 =15
#H 5

Da M | K eine endliche separable Korpererweiterung ist, gibt es nach dem
Satz vom primitiven Element ein o € M mit M = K («).

Sei p € K[T] das Minimalpolynom von « iiber K. Dann ist

degu=[K(a): K]=[M: K] =15.

P.S.
e Die Zahlen 15, 25, 24, 1, 34 sind in Z nicht prim.

e Die Zahl 2 ist in Q nicht prim.



