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Prof. Dr. C. Löh/F. Hofmann 9. Februar 2026

Matrikelnummer:

• Diese Klausur besteht aus 7 Seiten. Bitte überprüfen Sie, ob Sie alle Seiten
erhalten haben.

• Bitte versehen Sie alle Seiten mit Ihrer Matrikelnummer.

• Bitte schreiben Sie Lösungen zu verschiedenen Aufgaben auf verschiedene
Blätter. Sie können Ihre Lösungen direkt in die Klausur schreiben.

• Beginn: 9:00. Sie haben 120 Minuten Zeit, um die Klausur zu bearbeiten;
bitte legen Sie Ihren Studierendenausweis oder Lichtbildausweis zu Beginn
der Klausur vor sich auf den Tisch. Um Unruhe in den letzten Minuten zu
vermeiden, geben Sie bitte entweder um 11:00 Uhr oder vor 10:40 Uhr ab.

• Die Klausur besteht aus 6 Aufgaben. Es können im Total 60 Punkte erreicht
werden. Zum Bestehen genügen voraussichtlich 50% der Punkte.

• Es sind keinerlei Hilfsmittel wie Taschenrechner, Computer, Bücher, Vorle-
sungsmitschriften, Mobiltelephone etc. gestattet; Papier wird zur Verfügung
gestellt. Alle Täuschungsversuche führen zum Ausschluss von der Klausur; die
Klausur wird dann als nicht bestanden gewertet!

• Fragen zur Klausur können nur schriftlich (unter Angabe von Matrikelnummer
und Aufgabennummer) gestellt werden. Es werden nur Fragen beantwortet, die
auf missverständlich oder inkorrekt gestellten Aufgaben beruhen. Inhaltliche
Fragen werden nicht beantwortet. Antworten werden schriftlich gegeben.

Viel Erfolg!

Aufgabe 1 2 3 4 5 6 Summe

Punkte maximal 10 10 10 10 12 8 60

erreichte Punkte

Note: Unterschrift:
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Aufgabe 1 (1 + 3 + 3 + 3 = 10 Punkte).

1. Geben Sie die Definition für den Begriff des Index einer Untergruppe.

2. Zeigen Sie, dass S5 eine Untergruppe vom Index 24 enthält.

3. Gibt es einen surjektiven Gruppenhomomorphismus A5 −→ Z/3 ?

Begründen Sie Ihre Antwort.

4. Ist für jede auflösbare Gruppe G auch G×G auflösbar?

Begründen Sie Ihre Antwort.

Lösung:

1. Sei G eine Gruppe und sei H ⊂ G eine Untergruppe. Die Anzahl (bzw. Kar-
dinalität)

[G : H] := #{g ·H | g ∈ G}

der Linksnebenklassen von H in G bezeichnet man als Index von H in G.

2. Sei H die von σ := (1 2 3 4 5) erzeugte Untergruppe von S5. Wegen ordσ = 5
ist #H = #(Z/5) = 5.

Mit dem Satz von Lagrange (angewendet auf die Kette {e} ⊂ H ⊂ G) folgt

[G : H] =
#G

#H
=

#S5
5

=
5!

5
= 4! = 24.

3. Behauptung. Nein, es gibt keinen Gruppenhomomorphismus A5 −→ Z/3, der
surjektiv ist.

Beweis. Angenommen, es gäbe einen Gruppenhomomorphismus ϕ : A5 −→
Z/3, der surjektiv ist. Mit dem Homomorphiesatz folgt

A5/ kerϕ ∼=Group Z/3.

Insbesondere wäre dann kerϕ ein Normalteiler von A5 mit kerϕ 6= {e} und
kerϕ 6= A5. Dies widerspricht der Tatsache, dass die Gruppe A5 einfach ist.

Also gibt es keinen solchen Gruppenhomomorphismus.

4. Behauptung. Ja, ist G eine auflösbare Gruppe, so ist auch G×G auflösbar.
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Beweis. Sei π : G × G −→ G die Projektion auf die zweite Komponente und
N := kerπ. Dann ist N ein Normalteiler von G×G mit N = G×{e} ∼=Group G
und der Homomorphiesatz liefert

(G×G)/N ∼=Group imπ = G.

Mit den Vererbungseigenschaften auflösbarer Gruppen folgt somit aus der
Auflösbarkeit von G (die die Auflösbarkeit von N und (G × G)/N nach sich
zieht) auch die Auflösbarkeit von G×G.

[Alternativ kann man auch induktiv die abgeleiteten Gruppen von G × G
berechnen.]
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Aufgabe 2 (1 + 3 + 3 + 3 = 10 Punkte).

1. Geben Sie die Definition dafür, dass ein Ideal eines Ringes prim ist.

2. Zeigen Sie: Ist R ein Ring und p ⊂ R ein Primideal, so ist der Ring R/p
nicht isomorph zum Ring Q×Q.

3. Ist das Ideal (2 ·X + 2) in Q[X] prim?

Begründen Sie Ihre Antwort.

4. Ist das Polynom T 3 + T + 1 ∈ Q[T ] in Q[T ] irreduzibel?

Begründen Sie Ihre Antwort.

Lösung:

1. Sei R ein Ring. Ein Ideal p ⊂ R in R ist prim, wenn p 6= R ist und

∀x,y∈R x · y ∈ p =⇒ (x ∈ p ∨ y ∈ p).

2. Sei R ein Ring und sei p ⊂ R ein Primideal. Dann ist R/p ein Integritätsring.

Der Ring Q×Q ist jedoch kein Integritätsring, da etwa (1, 0) ein nicht-trivialer
Nullteiler ist: Es gilt (1, 0) 6= (0, 0) und (0, 1) 6= (0, 0), aber

(1, 0) · (0, 1) = (1 · 0, 0 · 1) = (0, 0).

3. Behauptung. Ja, das Ideal (2 ·X + 2) in Q[X] ist prim.

Beweis. Da 2 eine Einheit in Q[X] ist, folgt (2 ·X + 2) = (X + 1).

Das Polynom X + 1 in Q[X] ist (aus Gradgründen) irreduzibel.

Da Q[X] als Polynomring über einem Körper ein faktorieller Ring (sogar ein
Hauptidealring) ist, ist somit das Ideal (X + 1) ein Primideal in Q[X].

[Alternativ kann man zeigen, dass der Restklassenring Q[X]/(2·X+2) ∼=Ring Q
ein Integritätsring ist, und daraus schließen, dass das Ideal prim ist.]

4. Behauptung. Ja, das Polynom T 3 + T + 1 in Q[T ] ist irreduzibel.
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Beweis. Es ist Q = Q(Z) und das gegebene Polynom f := T 3 + T + 1 liegt
in Z[T ] und erfüllt deg f > 0.

Wir verwenden das Reduktionskriterium bezüglich der Primzahl 2 ∈ Z: Die
Primzahl 2 teilt den höchsten Koeffizienten von f nicht und Reduktion mo-
dulo 2 liefert das Polynom

f := T 3 + T + [1] ∈ F2[T ].

Das Polynom f ist in F2[T ] nach dem Nullstellenkriterium irreduzibel, denn
deg f = 3 und f besitzt wegen

f([0]) = [1] 6= [0] und f([1]) = [1] + [1] + [1] = [1] 6= [0]

keine Nullstellen in F2.

Nach dem Reduktionskriterium ist somit f in Q[T ] irreduzibel.
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Aufgabe 3 (1 + 3 + 3 + 3 = 10 Punkte).

1. Geben Sie die Definition dafür, dass eine algebraische Körpererweiterung
normal ist.

2. Zeigen Sie, dass die Körpererweiterung Q(
√

2,
√

3) | Q algebraisch und
normal ist.

3. Ist jede endliche Körpererweiterung von Q normal?

Begründen Sie Ihre Antwort.

4. Gibt es einen Körper K mit K× ∼=Group Z/17 ?

Begründen Sie Ihre Antwort.

Lösung:

1. Eine algebraische Körpererweiterung L | K ist normal, wenn für jedes α ∈ L
das Minimalpolynom von α über K bereits in L[T ] in Linearfaktoren zerfällt.

2. Die Elemente
√

2 und
√

3 sind algebraisch über Q (als Nullstellen von T 2 − 2
bzw. T 2 − 3 ∈ Q[T ]).

Also ist die von
√

2 und
√

3 erzeugte Körpererweiterung Q(
√

2,
√

3) | Q alge-
braisch.

Da T 2 − 2 und T 2 − 3 in Q[T ] normiert und irreduzibel sind (z.B. nach dem
Eisensteinschen Irreduzibilitätskriterium), handelt es sich dabei bereits um die
Minimalpolynome von

√
2 bzw.

√
3 über Q. Diese zerfallen über Q(

√
2,
√

3)
in Linearfaktoren, denn

T 2 − 2 = (T −
√

2) · (T +
√

2) und T 2 − 3 = (T −
√

3) · (T +
√

3).

Somit ist die von
√

2 und
√

3 erzeugte Körpererweiterung Q(
√

2,
√

3) | Q
normal.

3. Behauptung. Nein, nicht jede endliche Körpererweiterung von Q ist normal.

Beweis. Die Körpererweiterung Q( 3
√

2) | Q ist endlich, da sie von dem über Q
algebraischen Element 3

√
2 erzeugt wird.

Diese Körpererweiterung ist jedoch nicht normal, denn: Es ist µ := T 3 − 2 ∈
Q[T ] das Minimalpolynom von 3

√
2 über Q (z.B. nach dem Eisensteinschen

Irreduzibilitätskriterium).
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Es ist ζ3 · 3
√

2 ∈ C eine nicht-reelle Nullstelle von µ. Wegen Q( 3
√

2) ⊂ R
liegt diese Nullstelle nicht in Q( 3

√
2). Somit zerfällt µ über Q( 3

√
2) nicht in

Linearfaktoren. Daher ist Q( 3
√

2) | Q nicht normal.

4. Behauptung. Nein, es gibt keinen Körper K mit K× ∼=Group Z/17.

Beweis. Angenommen, es gäbe einen solchen Körper K. Wegen K× = K \{0}
wäre dann

#K = 1 + #K× = 1 + #(Z/17) = 1 + 17 = 18.

Insbesondere wäre K ein endlicher Körper.

Nach der Klassifikation der endlichen Körper müsste somit #K = 18 eine
Primpotenz sein. Wegen der Primfaktorzerlegung 18 = 2 · 32 ist dies jedoch
nicht der Fall.

Dieser Widerspruch zeigt, dass es keinen solchen Körper K gibt.



Matrikelnr.: Seite 5/7

Aufgabe 4 (3 + 3 + 4 = 10 Punkte).

1. Formulieren Sie den kleinen Satz von Fermat.

2. Beweisen Sie den kleinen Satz von Fermat.

3. Bestimmen Sie die letzte Ziffer der Dezimaldarstellung von 733.

Lösung:

1. Sei p ∈ N prim. Dann gilt

xp−1 ≡ 1 mod p

für alle x ∈ Z mit p - x.

[Alternativ könnte man auch die verallgemeinerte Version formulieren:

Sei m ∈ N>0. Dann gilt
xϕ(m) ≡ 1 mod m

für alle x ∈ Z mit ggT(x,m) = 1.]

2. Beweis. Wir beweisen dies, indem wir die dazu äquivalente Behauptung

∀z∈(Z/(p))\{0} zp−1 = [1]

in Z/(p) beweisen.

Wir wissen, dass Z/(p) ein Körper ist; insbesondere ist (Z/(p)) \ {0} eine
Gruppe bezüglich Multiplikation mit genau p− 1 Elementen.

Mit dem Satz von Lagrange folgt, dass zp−1 = [1] für alle z ∈ Z/(p) \ {0}
gilt.

[Wird im ersten Teil die verallgemeinerte Version formuliert, so ist auch die
verallgemeinerte Version zu beweisen:

Beweis. Wir beweisen die zur Behauptung äquivalente Aussage

∀x∈Z ggT(x,m) = 1 =⇒ [x]ϕ(m) = [1]

in Z/(m).

Sei x ∈ Z mit ggT(x,m) = 1. Nach den Eigenschaften der eulerschen ϕ-
Funktion ist [x] dann eine Einheit in Z/(m).

Außerdem enthält die Einheitengruppe Z/(m)× von Z/(m) genau ϕ(m) Ele-
mente. Mit dem Satz von Lagrange erhalten wir daher in Z/(m):

[x]ϕ(m) = [1]

]
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3. Wir verwenden die verallgemeinerte Version des kleinen Satzes von Fermat:
Es gilt

ϕ(10) = #{1, 3, 7, 9} = 4.

Wegen ggT(7, 10) = 1 gilt in Z/(10):

[733] = [7]33 = [7]4·8+1 = ([7]4)8 · [7]1 = [1]8 · [7] = [7]

Also ist 7 die letzte Ziffer von 733 im Dezimalsystem.

[Alternativ kann man mit der nicht-verallgemeinerten Version und dem chi-
nesischen Restsatz argumentieren:

• In Z/(2) gilt (da 7 ungerade ist)

[733] = [7]33 = [1]33 = [1].

• In Z/(5) gilt nach dem kleinen Fermat (da 5 prim und ggT(7, 5) = 1 ist):

[733] = [7]33 = [7]4·8+1 = ([7]4)8 · [7]1 = [1]8 · [7] = [7] = [2].

• Wegen ggT(2, 5) = 1 liefert der chinesische Restsatz, dass die kanoni-
schen Projektionen einen Ringisomorphismus Z/(10) ∼=Ring Z/(2)×Z/(5)
definieren. Das Urbild von ([1], [2]) unter diesem Isomorphismus ist [7].

Also ist [733] = [7] in Z/(10), und damit ist 7 die letzte Ziffer von 733 im
Dezimalsystem.]

[Alternativ kann man auch 33 = 25 + 1 nutzen und [733] ∈ Z/(10) durch
iteriertes Quadrieren bestimmen.]

[Alternativ kann man auch mit viel Geduld ausrechnen, dass

733 = 7730993719707444524137094407

ist (keine gute Idee!) und davon die letzte Ziffer als 7 ablesen.]
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Aufgabe 5 (3 + 3 + 3 + 3 = 12 Punkte). Sei α ∈ C mit

(α− 1)4 = 3

1. Zeigen Sie, dass [Q(α) : Q] = 4 ist.

2. Zeigen Sie, dass [Q( 5
√

3, α) : Q(α)] = 5 ist.

3. Zeigen Sie, dass # Gal(Q(α),Q) = 2 ist.

4. Ist Q(α) ein Zerfällungskörper von (T − 1)4 − 3 über Q ?

Begründen Sie Ihre Antwort.

Lösung:

1. Es bietet sich an, die folgende Vorüberlegung zu machen: Sei β := α−1. Dann
gilt Q(β) = Q(α) (da −1 ∈ Q) und β4 = 3.

Sei µ ∈ Q[T ] das Minimalpolynom von β über Q. Dann gilt µ = T 4 − 3,
denn dieses Polynom ist normiert, liegt in Q[T ], hat β als Nullstelle und ist
über Q = Q(Z) irreduzibel (nach dem Eisensteinschen Irreduzibilitätskriteri-
um bezüglich der Primzahl 3 in Z).

Also ist [Q(α) : Q] = [Q(β) : Q] = degµ = 4.

[Ohne die Vorüberlegung kann man alternativ auch feststellen, dass das Poly-
nom (T − 1)4− 3 = T 4− 4 · T 3 + 6 · T 2− 4 · T − 2 das Minimalpolynom von α
über Q ist (nach Eisenstein bezüglich der Primzahl 2 in Z).]

2. Es gilt [Q( 5
√

3) : Q] = 5 (das Minimalpolynom von 5
√

3 über Q ist nach Eisen-
stein T 5 − 3).

Also ist ggT([Q( 5
√

3) : Q], [Q(α) : Q]) = ggT(5, 4) = 1. Mit der Gradformel
für Komposita ergibt sich somit

[Q(
5
√

3, α) : Q] = [Q(
5
√

3) ·Q(α) : Q] = [Q(
5
√

3) : Q] · [Q(α) : Q] = 5 · 4.

Mit der Multiplikativität des Grades erhalten wir daraus

[Q(
5
√

3, α) : Q(α)] =
[Q( 4
√

3, α) : Q]

[Q(α) : Q]
=

5 · 4
4

= 5.
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3. Sei X := {x ∈ Q(β) | µ(x) = 0} Nach dem Konjugationsprinzip ist

# Gal(Q(α),Q) = # Gal(Q(β),Q) = #X.

Es gilt

X = {x ∈ Q(β) | x4 = 3} = { 4
√

3,− 4
√

3, i · 4
√

3,−i · 4
√

3} ∩Q(β).

Wegen β ∈ X können wir die folgenden Fälle unterscheiden:

À Sei β = 4
√

3 (analog: β = − 4
√

3). Dann ist −β ∈ X und Q(β) ⊂ R.

Insbesondere liegen ±i · 4
√

3 nicht in Q(β).

Also ist #X = #{ 4
√

3,− 4
√

3} = 2.

Á Sei β = i · 4
√

3 (analog: β = − 4
√

3). Dann ist −β ∈ X.

Nach dem ersten Fall ist ± 4
√

3 nicht in Q(β).

Also ist #X = #{i · 4
√

3,−i · 4
√

3} = 2.

In beiden Fällen ergibt sich also # Gal(Q(α),Q) = 2.

[Da Q(α) | Q keine Galoiserweiterung ist, kann man nicht den Hauptsatz der
Galoistheorie direkt auf die Körpererweiterung Q(α) | Q anwenden.]

4. Behauptung. Nein, Q(α) ist kein Zerfällungskörper von (T − 1)4 − 3 über Q.

Beweis. Angenommen, Q(α) wäre ein Zerfällungskörper von (T − 1)4 − 3
über Q. Dann wäre Q(α) | Q eine endliche Galoiserweiterung (endlich nach
dem ersten Teil, normal nach der Annahme, separabel aufgrund von Charak-
teristik 0).

Dann wäre (nach den Berechnungen im ersten bzw. dritten Teil)

4 = [Q(α) : Q] = # Gal(Q(α),Q) = 2,

was nicht sein kann.
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Aufgabe 6 (2+ 3+ 3 = 8 Punkte). Sei L | K eine endliche Galoiserweiterung,
sei G := Gal(L,K) und es gelte #G = 75.

1. Bestimmen Sie die Anzahl der 5-Sylowgruppen von G.

Begründen Sie Ihre Antwort.

2. Zeigen Sie, dass es genau einen Zwischenkörper M von L | K gibt, der
[M : K] = 3 erfüllt.

3. Zeigen Sie, dass es ein Element in L gibt, dessen Minimalpolynom über K
den Grad 15 besitzt.

Lösung:

1. Sei s5 die Anzahl der 5-Sylowgruppen von G. Nach den Sylowsätzen gilt

s5 ≡ 1 mod 5 und s5 | 75,

und damit s5 ∈ {1, 6, 11, 16, . . . } ∩ {1, 3, 5, 15, 25, 75} = {1}. Also ist s5 = 1.

[Behauptungen wie
”
Es gibt eine 5-Sylowgruppe in G.“ o.ä. geben den Sach-

verhalt nicht vollständig wieder. Korrekt wäre in diesem Fall
”
Es gibt genau

eine 5-Sylowgruppe in G.“ Dies ist ein fundamentaler Unterschied.]

2. Ist M ein Zwischenkörper von L | K, so gilt (da L | K und L | M endliche
Galoiserweiterungen sind)

[M : K] =
[L : K]

[L : M ]
=

# Gal(L,K)

# Gal(L,M)
=

[
G : Gal(L,M)

]
.

Nach dem Hauptsatz der Galoistheorie ist die Anzahl der Zwischenkörper M
von L | K mit [M : K] = 3 also genau die Anzahl der Untergruppen H von G
mit [G : H] = 3.

Nach dem Satz von Lagrange stimmt letztere Anzahl mit der Anzahl der
Untergruppen H von G mit #H = 75/3 = 25 überein.

Wegen 75 = 3·52 ist diese Anzahl also die Anzahl aller 5-Sylowgruppen von G.

Nach dem ersten Teil ist diese Anzahl 1.

[Oft wurde nur die Existenz gezeigt oder eine Mischversion, bei der nicht klar
war, ob Existenz oder Eindeutigkeit gezeigt wird (da nicht deutlich gesagt
wurde, was vorausgesetzt wird und was konstruiert wird).]
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3. Wegen #G = 75 = 3 · 52 enthält G nach dem Satz von Cauchy ein Element g
der Ordnung 5. Sei H := 〈g〉G. Dann ist H ∼=Group Z/5, und damit #H = 5.

Nach dem Hauptsatz der Galoistheorie gibt es einen ZwischenkörperM von L |
K mit (nämlich M = LH)

[M : K] = [G : H] =
#G

#H
=

75

5
= 15.

Da M | K eine endliche separable Körpererweiterung ist, gibt es nach dem
Satz vom primitiven Element ein α ∈M mit M = K(α).

Sei µ ∈ K[T ] das Minimalpolynom von α über K. Dann ist

degµ = [K(α) : K] = [M : K] = 15.

P.S.:

• Die Zahlen 15, 25, 24, 1, 34 sind in Z nicht prim.

• Die Zahl 2 ist in Q nicht prim.


