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Prof. Dr. C. Löh/F. Hofmann Januar 2026

Matrikelnummer:

• Diese Klausur besteht aus 7 Seiten. Bitte überprüfen Sie, ob Sie alle Seiten
erhalten haben.

• Bitte versehen Sie alle Seiten mit Ihrer Matrikelnummer.

• Bitte schreiben Sie Lösungen zu verschiedenen Aufgaben auf verschiedene
Blätter. Sie können Ihre Lösungen direkt in die Klausur schreiben.

• Beginn: 9:00. Sie haben 120 Minuten Zeit, um die Klausur zu bearbeiten;
bitte legen Sie Ihren Studierendenausweis oder Lichtbildausweis zu Beginn
der Klausur vor sich auf den Tisch. Um Unruhe in den letzten Minuten zu
vermeiden, geben Sie bitte entweder um 11:00 Uhr oder vor 10:40 Uhr ab.

• Die Klausur besteht aus 6 Aufgaben. Es können im Total 60 Punkte erreicht
werden. Zum Bestehen genügen voraussichtlich 50% der Punkte.

• Es sind keinerlei Hilfsmittel wie Taschenrechner, Computer, Bücher, Vorle-
sungsmitschriften, Mobiltelephone etc. gestattet; Papier wird zur Verfügung
gestellt. Alle Täuschungsversuche führen zum Ausschluss von der Klausur; die
Klausur wird dann als nicht bestanden gewertet!

• Fragen zur Klausur können nur schriftlich (unter Angabe von Matrikelnummer
und Aufgabennummer) gestellt werden. Es werden nur Fragen beantwortet, die
auf missverständlich oder inkorrekt gestellten Aufgaben beruhen. Inhaltliche
Fragen werden nicht beantwortet. Antworten werden schriftlich gegeben.

Viel Erfolg!
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Punkte maximal 10 10 10 10 12 8 60
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Aufgabe 1 (1 + 3 + 3 + 3 = 10 Punkte).

1. Geben Sie die Definition für den Begriff des Normalteilers.

2. Zeigen Sie: Ist N ein Normalteiler in einer Gruppe G, so ist N ×N ein
Normalteiler in G×G.

3. Gibt es einen surjektiven Gruppenhomomorphismus D5×D55 −→ Z/3 ?

Begründen Sie Ihre Antwort.

4. Ist die Gruppe S3 × S7 auflösbar?

Begründen Sie Ihre Antwort.

Lösung:

1. Sei G eine Gruppe. Eine Untergruppe N ⊂ G ist ein Normalteiler in G, wenn:

∀n∈N ∀g∈G g · n · g−1 ∈ N

2. Es ist N × N eine Untergruppe von G × G, da die Menge N × N aufgrund
der komponentenweisen Verknüpfung auf G × G das neutrale Element (e, e)
von G×G enthält und unter Verknüpfung und Inversen abgeschlossen ist.

Für alle n = (n1, n2) ∈ N und alle g = (g1, g2) ∈ G×G gilt

g · n · g−1 = (g1, g2) · (n1, n2) · (g1, g2)−1 = (g1 · n1 · g−11 , g2 · n2 · g−12 ).

Da N ein Normalteiler in G ist, sind beide Komponenten in N enthalten. Also
ist g · n · g−1 ∈ N ×N .

3. Behauptung. Nein, es gibt keinen surjektiven Gruppenhomomorphismus D5×
D55 −→ Z/3.

Beweis. Angenommen, es gäbe einen surjektiven Gruppenhomomorphismus
ϕ : D5 × D55 −→ Z/3. Wir betrachten H := kerϕ. Dann induziert ϕ nach
dem Homomorphiesatz einen Isomorphismus (D5 ×D55)/H ∼=Group Z/3. Ins-
besondere ist

3 = #Z/3 =
#(D5 ×D55)

#H
=

2 · 5 · 2 · 55

#H
.

Dies steht im Widerspruch dazu, dass #H ∈ N>0 ist und 3 kein Teiler von 2 ·
5 · 2 · 55 = 22 · 52 · 11 ist.

[Hinweis. Es genügt nicht, zu zeigen, dassD5×D55 kein Element der Ordnung 3
enthält.]
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4. Behauptung. Nein, die Gruppe S3 × S7 ist nicht auflösbar.

Beweis. Da Untergruppen von auflösbaren Gruppen auflösbar sind, genügt
es, eine Untergruppe von S7 anzugeben, die nicht auflösbar ist. Wegen 7 ≥ 5
ist S7 nicht auflösbar; also ist auch die Untergruppe {id{1,2,3}}×S7 ∼=Group S7
von S3 × S7 nicht auflösbar.
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Aufgabe 2 (1 + 3 + 3 + 3 = 10 Punkte).

1. Geben Sie die Definition dafür, dass ein Ideal eines Ringes maximal ist.

2. Zeigen Sie: Ist R ein Ring und m ⊂ R ein maximales Ideal, so ist der
Ring R/m nicht isomorph zum Ring Q×Q.

3. Ist das Ideal (X + 1) in Q[X, Y ] maximal?

Begründen Sie Ihre Antwort.

4. Ist das Polynom T 8 + 9 · T 4 + 42 ∈ Q[T ] in Q[T ] irreduzibel?

Begründen Sie Ihre Antwort.

Lösung:

1. Sei R ein Ring. Ein Ideal m ⊂ R in R ist maximal, wenn m 6= R und für alle
Ideale a ⊂ R in R gilt: Ist m ⊂ a, so folgt bereits a = m oder a = R.

2. Sei R ein Ring und sei m ⊂ R ein maximales Ideal. Dann ist R/m ein Körper.

Der Ring Q × Q ist jedoch kein Körper, da etwa (1, 0) kein multiplikatives
Inverses in Q×Q besitzt.

[Alternativ könnte man hier statt direkt mit den fehlenden Inversen z.B. auch
darüber argumentieren, dass Q×Q nicht nullteilerfrei ist.]

Also ist der Ring R/m nicht isomorph zu Q×Q.

3. Behauptung. Nein, das Ideal (X + 1) in Q[X,Y ] ist nicht maximal.

Beweis. Mit der universellen Eigenschaft von Polynomringen und Restklas-
senringen folgt, dass

Q[X,Y ]/(X + 1) −→ Q[Y ]

[Q 3 x] 7−→ x

[X] 7−→ −1

[Y ] 7−→ Y

ein wohldefinierter Ringhomomorphismus ist. Dieser ist sogar ein Isomorphis-
mus mit Inversem

Q[Y ] −→ Q[X,Y ]/(X + 1)

Q 3 x 7−→ [x]

Y 7−→ [Y ].
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Also ist Q[X,Y ]/(X + 1) ∼=Ring Q[Y ] kein Körper. Somit ist das Ideal (X + 1)
in Q[X,Y ] nicht maximal.

[Man könnte alternativ auch nachweisen, dass (X + 1, Y ) ein Ideal ist, das
echt zwischen (X + 1) und Q[X,Y ] liegt.

Es genügt jedoch nicht, zu zeigen, dass (X+1) in Q[X,Y ] irreduzibel ist.]

4. Behauptung. Ja, das Polynom f := T 8 + 9 · T 4 + 42 ∈ Q[T ] in Q[T ] ist
irreduzibel.

Beweis. Wir wenden das Eisensteinsche Irreduzibilitätskriterium auf den Grund-
ring Z und die Primzahl 3 ∈ Z an. Dies ist möglich, denn:

• Der Ring Z ist faktoriell, 3 ist prim in Z und Q = Q(Z).

• Das Polynom f liegt in Z[T ] und ist als normiertes Polynom primitiv.

• Es gilt für die Koeffizienten von f :

3 - 1, 3 | 9, 3 | 42, 32 - 42.

Also ist f nach dem Eisensteinschen Irreduzibilitätskriterium in Z[T ] und in
Q[T ] irreduzibel.
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Aufgabe 3 (1 + 3 + 3 + 3 = 10 Punkte).

1. Sei L | K eine Körpererweiterung und α ∈ L. Geben Sie die Definition
dafür, dass α algebraisch über K ist.

2. Zeigen Sie, dass die reelle Zahl
√

1 +
√

3 algebraisch über Q ist.

3. Ist jede algebraische Körpererweiterung endlich?

Begründen Sie Ihre Antwort.

4. Gibt es einen Körper K mit K× ∼=Group Z/4× Z/4 ?

Begründen Sie Ihre Antwort.

Lösung:

1. Das Element α ist algebraisch über K, wenn es ein f ∈ K[T ]\{0} mit f(α) = 0
gibt.

2. Sei α :=
√

1 +
√

3. Wir betrachten das Polynom f := T 4 − 2 · T 2 − 2 ∈ Q[T ].
Dann ist f nicht das Nullpolynom und es gilt

f(α) = α4 − 2 · α2 − 2 = (α2 − 1)2 − 3 = (1 +
√

3− 1)2 − 3 = 3− 3 = 0.

Also ist α algebraisch über Q.

[Man findet das Polynom f , indem man zunächst α2 und dann (α2 − 1)2

betrachtet, um die Wurzeln zu eliminieren.]

3. Behauptung. Nein, im allgemeinen sind algebraische Körpererweiterungen nicht
endlich.

Beweis. Sei K := {x ∈ C | x algebraisch über Q}. Dann ist K ein Körper
mit Q ⊂ K. Nach Konstruktion ist die Körpererweiterung K | Q algebraisch.

Diese Körpererweiterung K | Q ist jedoch nicht endlich (s. Vorlesung; da n
√

2
für alle n ∈ N>0 in K liegt und [Q( n

√
2) : Q] = n] gilt).

4. Behauptung. Nein, es gibt keinen Körper K mit K× ∼=Group Z/4× Z/4.
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Beweis. Angenommen, es gäbe einen solchen Körper K. Jede endliche Unter-
gruppe von K× ist zyklisch. Insbesondere wäre Z/4× Z/4 isomorph zu einer
zyklischen Gruppe, und damit selbst zyklisch.

Die Gruppe G := Z/4 × Z/4 ist jedoch nicht zyklisch, da #G = 16 ist, aber
aufgrund der komponentenweisen Verknüpfung für alle Elemente g ∈ G gilt:
ord g | 4. Insbesondere enthält G kein Element der Ordnung #G = 16.

[Alternativ kann man hier auch mit der Klassifikation der endlichen bzw. end-
lich erzeugten abelschen Gruppen argumentieren.]

Dieser Widerspruch zeigt, dass es keinen solchen Körper gibt.
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Aufgabe 4 (6 + 1 + 3 = 10 Punkte).

1. Formulieren Sie den Hauptsatz der Galoistheorie.

2. Nennen Sie eine Anwendung des Hauptsatzes der Galoistheorie.

3. Sei K := Q( 4
√

2) ⊂ C. Ist K | Q eine Galoiserweiterung?

Begründen Sie Ihre Antwort.

Lösung:

1. Sei L | K eine endliche Galoiserweiterung.

(a) Dann sind

Subext(L,K) −→ SubroupGal(L,K)

M 7−→ Gal(L,M)

SubroupGal(L,K) −→ Subext(L,K)

H 7−→ LH

zueinander inverse Bijektionen. Dabei bezeichnet SubroupGal(L,K) die
Menge aller Untergruppen von Gal(L,K) und Subext(L,K) die Menge
aller Zwischenkörper von L | K.

(b) Sei M ein Zwischenkörper von L | K. Dann ist die Körpererweite-
rung M | K genau dann normal, wenn Gal(L,M) ein Normalteiler
in Gal(L,K) ist. In diesem Fall ist

Gal(L,K)/Gal(L,M) −→ Gal(M,K)

[σ] 7−→ σ|M
ein wohldefinierter Gruppenisomorphismus.

2. Die (Nicht-)Konstruierbarkeit mit Zirkel und Linel.

[Alternativ: Die (Nicht-)Auflösbarkeit gewisser polynomialer Gleichungen durch
Radikale.]

3. Behauptung. Nein, K | Q ist keine Galoiserweiterung.

Beweis. Die Körpererweiterung K | Q ist nicht normal, denn: Das Minimal-
polynom von 4

√
2 über Q ist µ := T 4 − 4. Es gilt{
x ∈ C

∣∣ µ(x) = 0
}

= { 4
√

2,− 4
√

2, i · 4
√

2,−i · 4
√

2}.

Da 4
√

2 reell ist, gilt Q( 4
√

2) ⊂ R. Insbesondere ist i · 4
√

2 6∈ Q( 4
√

2), und damit
zerfällt µ über K nicht in Linearfaktoren.
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Aufgabe 5 (3 + 3 + 3 + 3 = 12 Punkte). Sei α ∈ C mit

(α4 + α3 + α2 + α + 1)3 = 0.

1. Zeigen Sie, dass [Q(α) : Q] = 4 ist.

2. Zeigen Sie, dass 7
√

2 nicht in Q(α) liegt.

3. Zeigen Sie, dass die Körpererweiterung Q(α) | Q normal ist.

4. Bestimmen Sie die Anzahl der Körperhomomorphismen Q(α, 7
√

2) −→ C.

Begründen Sie Ihre Antwort.

Lösung:

1. Sei f := T 4 +T 3 +T 2 +T + 1 ∈ Q[T ]. Dann ist f das Minimalpolynom von α
über Q, denn:

Nach Definition ist f normiert. Aufgrund der Nullteilerfreiheit von C ist
f(α) = 0. Außerdem ist f in Q[T ] irreduzibel (s. Vorlesung; da 4 + 1 = 5
prim ist). Also ist f das Minimalpolynom von α über Q.

Somit folgt [Q(α) : Q] = deg f = 4.

2. Sei β := 7
√

2. Dann ist
[Q(β) : Q] = 7,

da T 7 − 2 das Minimalpolynom von β über Q ist.

Angenommen, β läge in Q(α). Dann wäre Q(β) ein Zwischenkörper von Q(α) |
Q. Mit der Mulitplikativität des Grades folgt dann

4 = [Q(α) : Q] = [Q(α) : Q(β)] · [Q(β) : Q] = [Q(α) : Q(β)] · 7,

im Widerspruch zu [Q(α) : Q(β)] ∈ N≥1. Also ist β 6∈ Q(α).

3. Wegen
(T − 1) · f = T 5 − 1

ist die Nullstellenmenge von f in C genau X := {ζ5, ζ25 , ζ35 , ζ45} und α ∈ X.

Jede dieser Nullstellen ist eine primitive fünfte Einheitswurzel in C und somit
als Potenz jeder anderer dieser Nullstellen darstellbar. Insbesondere liegt jede
dieser Nullstellen in Q(α).

Da α über Q algebraisch ist (als Nullstelle von f), ist Q(α) | Q somit normal.



Matrikelnr.: Seite 6/7

4. Nach dem Konjugationsprinzip gibt es genau #X = 4 Körperhomomorphis-
men Q(α) −→ C.

Es ist T 7 − 2 das Minimalpolynom von β =
√

7− 2 über Q(α), denn: Es gilt
(nach der Rechnung in Teil 2 bzw. 1)

ggT
(
[Q(α) : Q], [Q(β) : Q]

)
= ggT(7, 4) = 1.

Somit folgt für das Minimalpolynom g von β über Q(α), dass

deg g = [Q(α)(β) : Q(α)] =
[Q(α)(β) : Q]

[Q(α) : Q]
=

[Q(α) : Q] · [Q(β) : Q]

[Q(α) : Q]

= [Q(β) : Q] = 7.

Da g außerdem ein (normierter) Teiler von T 7 − 2 ist, folgt g = T 7 − 2.

Da das Minimalpolynom T 7 − 2 von β über Q(α) genau sieben verschie-
dene Nullstellen in C besitzt, gibt es nach dem Konjugationsprinzip zu je-
dem Körperhomomorphismus σ : Q(α) −→ C genau sieben Fortsetzungen zu
Körperhomomorphismen Q(α, β) = Q(α)(β) −→ C.

Insgesamt gibt es also genau 4·7 = 28 Körperhomomorphismen Q(α, β) −→ C.
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Aufgabe 6 (2+ 3+ 3 = 8 Punkte). Sei L | K eine endliche Galoiserweiterung,
sei G := Gal(L,K) und es gelte #G = 44.

1. Bestimmen Sie die Anzahl der 11-Sylowgruppen von G.

Begründen Sie Ihre Antwort.

2. Zeigen Sie, dass es einen Gruppenhomomorphismus G −→ Z/2 gibt, der
surjektiv ist.

3. Zeigen Sie, dass es einen Zwischenkörper M von L | K mit [M : K] = 2
gibt.

Lösung:

1. Sei s11 die Anzahl der Sylowgruppen von G. Nach den Sylowsätzen gilt

s11 ≡ 1 mod 11 und s11 | 44,

und damit

s11 ∈ {1, 12, 23, 34, 45, . . . } ∩ {1, 2, 4, 11, 22, 44} = {1}.

Also ist s11 = 1.

2. Nach den Sylowsätzen besitzt G eine 11-Sylowgruppe S. Für diese gilt #S =
11, da #G = 22 · 11; außerdem ist S ein Normalteiler in G, da s11 = 1 ist.

Sei π : G −→ G/S die kanonische Projektion. Dann ist π ein surjektiver Grup-
penhomomorphismus und H := G/S erfüllt

#H =
#G

#S
=

22 · 11

11
= 22.

Insbesondere ist (da 22 ein Primquadrat ist) die Gruppe H abelsch.

Nach dem Hauptsatz über endlich bzw. endlich erzeugte abelsche Gruppen ist
somit H ∼=Group Z/4 oder H ∼=Group Z/2× Z/2. In beiden Fällen gibt es einen
surjektiven Gruppenhomomorphismus ϕ : H −→ Z/2.

Die Komposition ϕ ◦ π : G −→ Z/2 ist somit ein surjektiver Gruppenhomo-
morphismus.
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3. Nach 2. gibt es einen surjektiven Gruppenhomomorphismus ψ : G −→ Z/2.
Sei G′ := kerψ ⊂ G.

Nach dem Hauptsatz der Galoistheorie gibt es einen ZwischenkörperM von L |
K mit (nämlich LG′

)

[M : K] =
[L : K]

[L : M ]
=

# Gal(L,K)

# Gal(L,M)
=

#G

#G′

= #(G/G′) = #Z/2 = 2.


