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Aufgabe 1 (1+ 3 + 3 + 3 = 10 Punkte).

1.
2.

Geben Sie die Definition fiir den Begriff des Normalteilers.

Zeigen Sie: Ist N ein Normalteiler in einer Gruppe G, so ist N x N ein
Normalteiler in G x G.

Gibt es einen surjektiven Gruppenhomomorphismus Dy X D55 — Z/3 7

Begriinden Sie Thre Antwort.

. Ist die Gruppe S3 x S; auflésbar?

Begriinden Sie Thre Antwort.

Lésung:

1.

2.

Sei G eine Gruppe. Eine Untergruppe N C G ist ein Normalteiler in G, wenn:
VneN Vgea g- n-gleN

Es ist N x N eine Untergruppe von G x G, da die Menge N x N aufgrund
der komponentenweisen Verkniipfung auf G x G das neutrale Element (e, e)
von G x G enthélt und unter Verkniipfung und Inversen abgeschlossen ist.

Fiir alle n = (n1,n2) € N und alle g = (g1, 92) € G x G gilt

g-n-g = (91,92) - (n1,n2) - (91,92)_1 =(g1-m 'gf1,92 “ng 951)~

Da N ein Normalteiler in G ist, sind beide Komponenten in IV enthalten. Also
ist g-n-g7' € N xN.

Behauptung. Nein, es gibt keinen surjektiven Gruppenhomomorphismus D5 X
D55 — Z/B

Beweis. Angenommen, es gidbe einen surjektiven Gruppenhomomorphismus
¢: D5 X Dss — Z/3. Wir betrachten H := ker ¢. Dann induziert ¢ nach
dem Homomorphiesatz einen Isomorphismus (D5 X Dss)/H =group Z/3. Ins-

besondere ist
#(D5XD55) B 2-5-2-55

#H #H

Dies steht im Widerspruch dazu, dass #H € N+ ist und 3 kein Teiler von 2 -
5-2-55=2%.5%.11 ist.

[Hinweis. Es gentigt nicht, zu zeigen, dass D5 x D55 kein Element der Ordnung 3
enthélt.] O

3=#7/3 =
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4. Behauptung. Nein, die Gruppe S3 x S7 ist nicht auflosbar.

Beweis. Da Untergruppen von auflosbaren Gruppen auflésbar sind, geniigt
es, eine Untergruppe von S7 anzugeben, die nicht auflosbar ist. Wegen 7 > 5
ist S7 nicht auflosbar; also ist auch die Untergruppe {idg 231} X S7 ZGroup S7
von S3 X S7 nicht auflosbar. O]
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Aufgabe 2 (1+ 3 + 3 + 3 = 10 Punkte).

1. Geben Sie die Definition dafiir, dass ein Ideal eines Ringes maximal ist.

2. Zeigen Sie: Ist R ein Ring und m C R ein maximales Ideal, so ist der
Ring R/m nicht isomorph zum Ring Q x Q.

3. Ist das Ideal (X + 1) in Q[X, Y] maximal?
Begriinden Sie Thre Antwort.

4. Ist das Polynom T® +9 - T* + 42 € Q[T] in Q[T] irreduzibel?
Begriinden Sie Thre Antwort.

Lésung:
1. Sei R ein Ring. Ein Ideal m C R in R ist mazimal, wenn m # R und fiir alle

Ideale a C R in R gilt: Ist m C a, so folgt bereits a = m oder a = R.

2. Sei R ein Ring und sei m C R ein maximales Ideal. Dann ist R/m ein Korper.

Der Ring Q x Q ist jedoch kein Korper, da etwa (1,0) kein multiplikatives
Inverses in Q x Q besitzt.

[Alternativ kénnte man hier statt direkt mit den fehlenden Inversen z.B. auch
dariiber argumentieren, dass Q x @Q nicht nullteilerfrei ist.]

Also ist der Ring R/m nicht isomorph zu Q x Q.

. Behauptung. Nein, das Ideal (X + 1) in Q[X, Y] ist nicht maximal.

Beweis. Mit der universellen Eigenschaft von Polynomringen und Restklas-
senringen folgt, dass

QX Y]/(X+1) — Q[Y]

Q@3z]— =z
[X]+— —1
Y]—Y

ein wohldefinierter Ringhomomorphismus ist. Dieser ist sogar ein Isomorphis-
mus mit Inversem

QY] —Q

Qo2+

X, Y]/(X +1)
]
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Also ist Q[X,Y]/(X +1) =ging QY] kein Kérper. Somit ist das Ideal (X + 1)
in Q[X,Y] nicht maximal.

[Man konnte alternativ auch nachweisen, dass (X + 1,Y) ein Ideal ist, das
echt zwischen (X + 1) und Q[X, Y] liegt.

Es geniigt jedoch nicht, zu zeigen, dass (X +1) in Q[X, Y] irreduzibel ist.] O

4. Behauptung. Ja, das Polynom f := T8 +9.T* + 42 € Q[T] in Q[T] ist
irreduzibel.

Beweis. Wir wenden das Eisensteinsche Irreduzibilitatskriterium auf den Grund-
ring Z und die Primzahl 3 € Z an. Dies ist moglich, denn:

e Der Ring Z ist faktoriell, 3 ist prim in Z und Q = Q(Z).
e Das Polynom f liegt in Z[T] und ist als normiertes Polynom primitiv.

e Es gilt fiir die Koeffizienten von f:
311, 319, 3|42, 3%f42.

Also ist f nach dem Eisensteinschen Irreduzibilitétskriterium in Z[T] und in
Q[T irreduzibel. O
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Aufgabe 3 (1+ 3 + 3 + 3 = 10 Punkte).

1.

Sei L | K eine Korpererweiterung und a € L. Geben Sie die Definition
dafiir, dass « algebraisch iiber K ist.

Zeigen Sie, dass die reelle Zahl v/1 + /3 algebraisch iiber Q ist.

. Ist jede algebraische Korpererweiterung endlich?

Begriinden Sie Thre Antwort.

Gibt es einen Korper K mit K* =goup Z/4 X /47
Begriinden Sie Thre Antwort.

Lésung:

1. Das Element « ist algebraisch tiber K, wenn es ein f € K[T]\{0} mit f(a) =0

gibt.

. Sei a := v/1 4 /3. Wir betrachten das Polynom f :=T% —2.-T? —2 ¢ Q[T).

Dann ist f nicht das Nullpolynom und es gilt
flay=a*—2-a>-2=(?>-1)%?-3=(1+V3-1)2-3=3-3=0.

Also ist « algebraisch iiber Q.

[Man findet das Polynom f, indem man zuniichst o? und dann (a? — 1)?
betrachtet, um die Wurzeln zu eliminieren.]

Behauptung. Nein, im allgemeinen sind algebraische Korpererweiterungen nicht
endlich.

Beweis. Sei K := {x € C | x algebraisch iiber Q}. Dann ist K ein Kérper
mit Q C K. Nach Konstruktion ist die Kérpererweiterung K | Q algebraisch.

Diese Kérpererweiterung K | Q ist jedoch nicht endlich (s. Vorlesung; da /2
fiir alle n € Nug in K liegt und [Q(/2) : Q] = n] gilt). O

4. Behauptung. Nein, es gibt keinen Korper K mit K* =goup Z/4 x Z/4.
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Beweis. Angenommen, es gibe einen solchen Korper K. Jede endliche Unter-
gruppe von K* ist zyklisch. Insbesondere wire Z/4 x Z/4 isomorph zu einer
zyklischen Gruppe, und damit selbst zyklisch.

Die Gruppe G := Z/4 x Z/4 ist jedoch nicht zyklisch, da #G = 16 ist, aber
aufgrund der komponentenweisen Verkniipfung fiir alle Elemente g € G gilt:
ord g | 4. Insbesondere enthilt G kein Element der Ordnung #G = 16.

[Alternativ kann man hier auch mit der Klassifikation der endlichen bzw. end-
lich erzeugten abelschen Gruppen argumentieren. |

Dieser Widerspruch zeigt, dass es keinen solchen Korper gibt. O
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Aufgabe 4 (6 + 1 + 3 = 10 Punkte).

1. Formulieren Sie den Hauptsatz der Galoistheorie.
2. Nennen Sie eine Anwendung des Hauptsatzes der Galoistheorie.

3. Sei K :=Q(v/2) C C. Ist K | Q eine Galoiserweiterung?
Begriinden Sie Thre Antwort.

Losung:

1. Sei L | K eine endliche Galoiserweiterung.

(a) Dann sind
Subext(L, K') — Subroup Gal(L, K)
M s Gal(L, M)
Subroup Gal(L, K') — Subext(L, K)
Hw—— L
zueinander inverse Bijektionen. Dabei bezeichnet Subroup Gal(L, K) die

Menge aller Untergruppen von Gal(L, K) und Subext(L, K') die Menge
aller Zwischenkérper von L | K.

(b) Sei M ein Zwischenkérper von L | K. Dann ist die Korpererweite-
rung M | K genau dann normal, wenn Gal(L, M) ein Normalteiler
in Gal(L, K) ist. In diesem Fall ist

Gal(L,K)/ Gal(L, M) — Gal(M, K)
[o] — o|m
ein wohldefinierter Gruppenisomorphismus.

2. Die (Nicht-)Konstruierbarkeit mit Zirkel und Linel.

[Alternativ: Die (Nicht-)Auflosbarkeit gewisser polynomialer Gleichungen durch
Radikale.]

3. Behauptung. Nein, K | Q ist keine Galoiserweiterung.

Beweis. Die Korpererweiterung K | Q ist nicht normal, denn: Das Minimal-
polynom von v/2 iiber Q ist p := T* — 4. Es gilt

{a:E(C},u(a:):O}:{é/i—éf?,i-\4@,—1'-é/i}.

Da v/2 reell ist, gilt Q(+/2) C R. Insbesondere ist i - v/2 & Q(+/2), und damit
zerfillt p iiber K nicht in Linearfaktoren. O
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Aufgabe 5 (3+ 3 + 3 + 3 = 12 Punkte). Sei @ € C mit
(@*+a*+a* +a+1)°=0.
1. Zeigen Sie, dass [Q(«) : Q] =4 ist.
2. Zeigen Sie, dass v/2 nicht in Q(«) liegt.
3. Zeigen Sie, dass die Korpererweiterung Q(«) | Q normal ist.

4. Bestimmen Sie die Anzahl der Kérperhomomorphismen Q(a, v/2) — C.
Begriinden Sie Ihre Antwort.

Lésung:
1. Sei f:=T*+T3+T?+T+1 € Q[T]. Dann ist f das Minimalpolynom von «
iiber Q, denn:

Nach Definition ist f normiert. Aufgrund der Nullteilerfreiheit von C ist
f(a) = 0. AuBerdem ist f in Q[T irreduzibel (s. Vorlesung; da 4 +1 = 5
prim ist). Also ist f das Minimalpolynom von « iiber Q.

Somit folgt [Q(«a) : Q] = deg f = 4.
2. Sei 3 := v/2. Dann ist
[Q(B) : Q] =71,
da T7 — 2 das Minimalpolynom von f iiber Q ist.

Angenommen, [ lige in Q(a). Dann wire Q(f8) ein Zwischenkérper von Q(«) |
Q. Mit der Mulitplikativitdt des Grades folgt dann

4= Q) : Q = [Q(a) : QB - [Q(P) : Q] = [Q(e) - Q(B)] - 7,
im Widerspruch zu [Q(«) : Q(5)] € N>1. Also ist f ¢ Q(«).

3. Wegen
(T—-1)-f=T°-1
ist die Nullstellenmenge von f in C genau X := {5, Cg, Cg’, Cgl} und o € X.

Jede dieser Nullstellen ist eine primitive fiinfte Einheitswurzel in C und somit
als Potenz jeder anderer dieser Nullstellen darstellbar. Insbesondere liegt jede
dieser Nullstellen in Q(«).

Da « iiber Q algebraisch ist (als Nullstelle von f), ist Q(«) | Q somit normal.
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4. Nach dem Konjugationsprinzip gibt es genau #X = 4 Kérperhomomorphis-
men Q(a) — C.

Es ist T7 — 2 das Minimalpolynom von 8 = /7 — 2 iiber Q(«), denn: Es gilt
(nach der Rechnung in Teil 2 bzw. 1)

geT([Q(a) : Q] [Q(B) : Q)) = gT(7,4) = 1.
Somit folgt fiir das Minimalpolynom g von f iiber Q(«), dass

[Q(a)(8) : Q] _ [Q(e) : Q] - [Q(B) : Q]
[Q(a) : Q] [Q(a) : Q]

degg = [Q(a)(B) : Q)] =
=[Q(B):Q=7.

Da g aufilerdem ein (normierter) Teiler von 77 — 2 ist, folgt g = T — 2.

Da das Minimalpolynom 77 — 2 von f3 iiber Q(a) genau sieben verschie-
dene Nullstellen in C besitzt, gibt es nach dem Konjugationsprinzip zu je-
dem Kérperhomomorphismus o: Q(a) — C genau sieben Fortsetzungen zu
Koérperhomomorphismen Q(«, 8) = Q(a)(8) — C.

Insgesamt gibt es also genau 4-7 = 28 Kérperhomomorphismen Q(«, ) — C.
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Aufgabe 6 (2 + 3+ 3 = 8 Punkte). Sei L | K eine endliche Galoiserweiterung,
sei G := Gal(L, K) und es gelte #G = 44.

1. Bestimmen Sie die Anzahl der 11-Sylowgruppen von G.
Begriinden Sie Thre Antwort.

2. Zeigen Sie, dass es einen Gruppenhomomorphismus G — Z/2 gibt, der
surjektiv ist.

3. Zeigen Sie, dass es einen Zwischenkorper M von L | K mit [M : K] =2
gibt.

Losung:
1. Sei s11 die Anzahl der Sylowgruppen von G. Nach den Sylowsétzen gilt
s;1=1 mod 11 und s1 | 44,
und damit
s11 € {1,12,23,34,45, ...y N {1,2,4,11,22,44} = {1}.
Also ist s11 = 1.

2. Nach den Sylowsiéitzen besitzt G eine 11-Sylowgruppe S. Fiir diese gilt #5 =
11, da #G = 22 - 11; auBerdem ist S ein Normalteiler in G, da s1; = 1 ist.

Sei m: G — G/ S die kanonische Projektion. Dann ist 7 ein surjektiver Grup-
penhomomorphismus und H := G/S erfiillt

:ﬂ:?.n:?'
#S 11

#H

Insbesondere ist (da 22 ein Primquadrat ist) die Gruppe H abelsch.

Nach dem Hauptsatz tiber endlich bzw. endlich erzeugte abelsche Gruppen ist
somit H Zgroup Z/4 oder H Zgroup Z/2 x 7Z/2. In beiden Fillen gibt es einen
surjektiven Gruppenhomomorphismus ¢: H — Z/2.

Die Komposition ¢ o m: G — 7Z/2 ist somit ein surjektiver Gruppenhomo-
morphismus.
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3. Nach 2. gibt es einen surjektiven Gruppenhomomorphismus ¢: G — Z/2.
Sei G’ :=kervy C G.

Nach dem Hauptsatz der Galoistheorie gibt es einen Zwischenkorper M von L |
K mit (ndmlich L&)

[L:K] #Gal(L,K) #G

[L:M]  #Gal(L,M) #G'

=#(G/G") = #7/2 = 2.

[M: K] =




