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Many group-theoretic problems look deceivingly simple, but turn out to be
algorithmically unsolvable:

Given a presentation of a group, can we decide whether the resulting group
is trivial, finite, cyclic? Which order does a given element have? Are two given
elements conjugate?

The algorithmic unsolvability of these problems has far-reaching consequences
for other fields; e.g., many decision problems in geometry and topology can be
reduced to such undecidable problems in group theory and thus are also algo-
rithmically undecidable.

In this seminar, we will introduce the language of Turing machines, (un)de-
cidability, and classical undecidable problems. Moreover, we will learn the basics
on presentations of groups and group-theoretic constructions. We will then
combine both aspects and study the (un)decidability of various problems in
group theory. In the last part of the seminar, we will see some consequences of
this in topology. Conversely, we will also study certain special classes of groups
in which several of the problems do have algorithmic solutions.

Several talks will also be suitable for students in the Lehramt Gymnasium
track.

References. Large parts of the seminar will follow the book by Rotman [Rot95].
However, you may and should also consult other sources.

Prerequisites. Basic knowledge about groups will be assumed. The talks on
applications in topology require some basic (algebraic) topology background.

Admin and preparation. Please take the general advice on seminars into ac-
count: https://loeh.app.uni-regensburg.de/teaching/seminar preparation.pdf

Organisers.
Prof. Dr. Clara Löh (clara.loeh@ur.de),
Matthias Uschold (matthias.uschold@ur.de),
Franziska Hofmann (franziska2.hofmann@ur.de; starting from 10/2023)

Basics of Computability Theory

Talk 1 (Turing machines).
Main reference: [Rot95, p. 420–425] [Cut80, Section 4.1] [DW83, Chapter 6]
[BJ74, Chapter 3]
We will capture computability via the notion of Turing machines.

• Define Turing machines and give easy examples.

• Define recursively enumerable and recursive sets and give examples.

• Prove (by a cardinality argument) that there must be subsets of N that
are not recursive or recursively enumerable.

• Define Gödel numberings.

• There exist many minor modifications of Turing machines (e.g., with
42 bands instead of just one). Present some of them and sketch a proof
that a modification of your choice leads to the same notion of recursive
sets [DW83, Chapter 6.6].

https://loeh.app.uni-regensburg.de/teaching/seminar_preparation.pdf


Talk 2 (Church’s Thesis and Turing completeness in computer games).
Main reference: [Cut80, Chapter 4] [DW83, Chapter 3] [Rot95, pp. 420–424]
[BJ74, Chapters 6–8]
Turing machines are by far not the only approach to defining computability. In
fact, there exist a bunch of modifications as well as entirely different models for
defining computability. It turns out that many of these notions define the same
notion of computability. In this case, we call such a system Turing complete.

Turing machines and other notions intend to be Turing- complete. How-
ever, there are also (computer) games that turn out to be Turing-complete by
accident.

• Recall the definition of Turing machines.

• Present a different approach from theoretical computer science, (e.g., λ-
calculus, recursion theory).

• Present an approach to computation or recognition of abstract languages
that is not Turing complete (e.g., regular expressions).

• State that most programming languages are Turing complete (e.g., Python,
C, Haskell, but also TEX).

• Pick your favourite Turing complete computer game or card game, de-
scribe the available building blocks and sketch a method for proving that
the game is Turing complete [CBH19, Ric].

Talk 3 (the Halting Problem and Rice’s Theorem).
Main reference: [DW83, Chapter 4.2, 4.7] [Rot95, pp. 420–424] [BJ74, Chap-
ter 5]
We can define a subset of the set of Turing machines and inputs that stops on
the given input after a finite number of steps, the Halting Problem. Using a
Gödel numbering, this is a subset of N that is not recursive.

• Motivate why the Halting Problem and the problem posed in Rice’s Theo-
rem might be interesting from a programmer’s point of view. You may use
here that many programming languages are Turing complete (see Talk 2).

• Formulate a precise statement for the unsolvability of the Halting Problem.

• Prove that the Halting Problem set in N is not recursive.

• Prove Rice’s Theorem: all non-trivial properties involving semantics of
Turing machines are undecidable.

Basics of Group Theory

Talk 4 (presentations of groups and Cayley graphs).
Main reference: [Löh17, Chapter 2.2, 2.3, 3.2]

• Define free groups.

• Introduce groups given by generators and relations, finitely generated, and
finitely presented groups.
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• Define the following constructions: free products, free amalgamated prod-
ucts.

• State concrete constructions as well as universal properties of these con-
structions.

• Illustrate these constructions with examples

• Define Cayley graphs.

Talk 5 (HNN extensions).
Main reference: [Löh17, Section 2.3.2] [Rot95, p. 401–417 (without the geomet-
ric parts)]

• Define HNN extensions and give examples.

• Prove that every countable group can be embedded into a group generated
by two generators.

• Prove that there are uncountably many isomorphism types of finitely gen-
erated groups.

The word problem

Talk 6 (the word problem).
Main reference: [Mei08, Section 5.2]
The word problem asks if a given word in the generators of a presentation of a
group represents the trivial element. In this talk, we establish solvability of the
word problem for some classes of groups.

• Define the word problem for finitely generated groups with a set of gen-
erators.

• Show that the solvability of the word problem does not depend on the
choice of a finite generating set [Mil92, Lemma 2.2]. We can thus talk
about the solvability of the word problem of a finitely generated group
without specifying the generating set.

• Show that finite groups, free abelian groups Zn, and free groups Fn have
solvable word problem (by describing an algorithm solving the word prob-
lem; note that you may fix a finite generating set of your choice).

• Define residual finiteness and show that finitely presented, residually finite
groups have solvable word problem [Mil92, Theorem 5.3]. Give examples
of such groups (e.g., matrix groups).

Talk 7 (Dehn presentations and hyperbolic groups).
Main reference: [Löh17, Chapter 7.4] [BH99, Chapter III.2]
Some groups admit ‘nice’ presentations, implying the solvability of the word
problem. This class of groups contains all hyperbolic groups.

• Define Dehn presentations.
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• Show that groups given by Dehn presentations have solvable word prob-
lem.

• Give a short overview of important properties and examplex of hyperbolic
groups [Löh17, Chapters 7.3, 7.5].

• Sketch a proof that hyperbolic groups admit Dehn presentations and thus
have solvable word problem.

Talk 8 (One-relator groups).
Main reference: [MS73] [Put] [Mag32]
One-relator groups are groups admitting a presentation with a single relation,
i.e., of the form 〈s1, . . . , sn | r1〉. Surprisingly, many problems in this class of
groups are solvable.

• Define one-relator groups and give examples, in particular, surface groups
and Baumslag–Solitar groups BS(m,n).

• Give an explicit solution of the word problem for BS(1, 2) [Mei08, Propo-
sition 5.4].

• Show that one-relator groups have solvable word problem. You may black-
box/sketch some intermediate results (e.g., the Freiheitssatz).

• Time permitting: Mention more results known for the class of one-relator
groups (e.g., examples of hyperbolic one-relator groups).

Unsolvability of the word problem

Talk 9 (groups with unsolvable word problem).
Main reference: [Rot95, p. 425–433]

• Recall from Talk 3 that the Halting Problem is unsolvable.

• Recall the definition of the word problem of groups and adapt it to semi-
groups.

• Prove the Markov–Post theorem: There exists a finitely presented semi-
group with unsolvable word problem.

• Prove the Novikov–Boone–Britton theorem: There exists a finitely pre-
sented group with unsolvable word problem. For this step, you may as-
sume Boone’s Lemma (which will be proved in Talk 10).

Talk 10 (Boone’s lemma).
Main reference: [Rot95, p. 425–433]
In Talk 9, we proved the Novikov–Boone–Britton theorem, relying on Boone’s
lemma, which will be proved in this talk.

• Recall the statement of the Novikov–Boone–Britton theorem.

• Sketch the proof of Boone’s lemma.

• Provide a geometric motivation for the algebraic proof.
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Talk 11 (Higman’s embedding theorem).
Main reference: [Rot95, p. 450–464]
Higman’s embedding theorem states that every recursively presented group can
be embedded into a finitely presented group.

• Define recursively presented groups.

• Give examples (e.g., finitely presented groups, Lamplighter groups).

• Sketch a proof of Higman’s embedding theorem.

Talk 12 (Markov properties of groups).
Main reference: [Rot95, p. 464–470]
A large class of undecidable properties about groups are the Markov properties.

• Prove the existence of universal finitely presented groups.

• Define Markov properties.

• Give examples (e.g., being trivial, finite, abelian, . . . )

• Prove the Adian–Rabin theorem: Markov properties cannot be decided
by algorithms.

Undecidable problems in topology

We will apply the results from the last section to conclude that some problems
in topology are not algorithmically decidable.

Talk 13 (homeomorphism problem for 4-manifolds).
Main reference: [MG21], and the references therein

• Recall the definition of the fundamental group.

• State homotopy invariance and the theorem of Seifert and van Kampen.

• Explain how to obtain a presentation of the fundamental group of a sim-
plicial complex [Sti93, Chapter 4].

• Show that the following problem is not decidable: Given two 4-manifolds
M and N , are M and N homeomorphic?

Talk 14 (second homology, knot groups).
Main reference: [Gor95]
State that the following problems are not decidable: For a finitely presented
group G,

• decide if H2(G;Z) ∼= 0;

• compute the deficiency of G;

• decide if G is a higher-dimensional knot group.

Prove at least one of these theorems (and introduce the necessary notions).
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