Handout

Der Satz von Borsuk - Ulam

Der Satz von Borsuk – Ulam wurde von Stanislaw Ulam vermutet und 1933 durch Karol Bursuk bewiesen.

1. Definition:

$$\begin{split} & B^n := \{ \; (\times_{_{\boldsymbol{1}}} \; , \; \ldots \times_{_{\boldsymbol{n}}}) \; \in \; \mathbb{R}^n \; : \; \times_{_{\boldsymbol{1}}}^2 \; + \; \ldots \; + \; \times_{_{\boldsymbol{n}}}^2 \; \leq \; 1 \} \; \forall n \; \geq \; 1 \\ & S^n := \; \delta B^{n+1} \; = \{ \left(\times_{_{\boldsymbol{1}}} \; , \; \ldots \times_{_{\boldsymbol{n}+1}} \right) \; \in \; \mathbb{R}^{n+1} \; : \; \times_{_{\boldsymbol{1}}}^2 \; + \; \ldots \; + \; \times_{_{\boldsymbol{n}+1}}^2 \; = \; 1 \} \; \forall n \; \geq \; 0 \end{split}$$

2. Definition:

Seien $X \subseteq \mathbb{R}^n$, $Y \subseteq \mathbb{R}^m$, n, $m \in \mathbb{N}$

Eine Funktion $f:X \to Y$ heißt ungerade, genau dann wenn gilt

$$f(-x) = -f(x) \ \forall x \in X$$

3. Beispiel:

$$f:\mathbb{R}\to\mathbb{R}$$

$$f(x) = x^3$$

(Punktsymmetrie zum Koordinatenursprung)

4. Definition:

Ein Paar
$$(x_1, x_2) \in \mathbb{R}^n$$
 – $\{0\}$ heißt antipodal, falls
$$x_1 = -x_2$$

5. Beispiel:

$$S^1 = \{ (x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 = 1 \}$$

((0,1), (0, -1))

Zwei Punkte auf der Sphäre heißen antipodal, wenn sie in genau engegengesetzte Richtungen vom Mittelpukt liegen.

6. Satz: (Borsuk - Ulam)

Für n ≥ 0 sind folgende Aussagen äquivalent:

- 1) Für jede stetige Abb. $f:S^n \to \mathbb{R}^n$ existiert $x \in S^n$ mit f(x) = f(-x)
- 2) Für jede ungerade stetige Abb. $f:S^n \to \mathbb{R}^n$ existiert $x \in S^n$ mit f(x) = 0
- 3) Es existiert keine ungerade stetige Abb. $f:S^n \to S^{n-1}$
- 4) Es existiert keine stetige Abb. $f:B^n \to S^{n-1}$ welche ungerade auf dem Rand $\delta B^n = S^{n-1}$ ist.
- 5) Für jede Überdeckung von Sⁿ mit (n + 1) abgeschlossenen Mengen F_1, \ldots, F_{n+1} existiert mindestens eine Menge F_i , die ein antipodales Paar enthält, d.h. $(-F_i) \cap F_i \neq \emptyset$ für ein $1 \leq i \leq n+1$
- 6) Für jede Überdeckung von Sⁿ mit (n + 1) offenen Mengen U₁,..., U_{n+1} existiert mindestens eine Menge U_i, die ein antipodales Paar enthält, d.h. $(-U_i) \cap U_i \neq \emptyset$ für ein $1 \leq i \leq n+1$

Beweisidee:

Man zeigt die Äquivalenz der Aussagen wie folgt:

- 1) ⇔ 2) ⇔ 3) ⇔ 4) 5) ⇔ 6)
- 1) \Rightarrow 5)
- 5) ⇒ 3)

Borsuk - Ulam 2) zeigt man mit Widerspruch.

7. Satz: (Brouwerscher Fixpunktsatz)

Sei $n \in \mathbb{N}$.

Jede stetige Abbildung f: $B^n \to B^n$ hat einen Fixpunkt, d.h. es existiert $x \in B^n$ mit f(x) = x

Beweisidee:

Den Satz zeigt man mit Widerspruch zu Borsuk – Ulam 4).

Literatur:

[1] J. Matousek. Using the Borsuk – Ulam Theorem, Lectures on topological methods in combinatorics and geometry. Written in cooperation with Anders Björner and Günter M. Ziegler, Universitext, Springer, 2003.