Seminar WS 2024/25

Graphs, Groups, Topology, and Computational Complexity

Clara Löh Radu Curticapean

Classic Nintendo Games are (Computationally) Hard Greg Aloupis, Erik D. Demaine, Alan Guo, Giovanni Viglietta

upper bounds on resources (efficient algorithms)

How hard are computational problems?

lower bounds on resources (rule out efficient algorithms)

Which resources can be analyzed?

Image: Provide the provide the second sec

greedy algorithms

divide and conquer

- 💾 memory (e.g., RAM)
- 👯 parallelism (multiple CPUs, GPUs)
- 🞲 randomness (vs. pseudorandomness)
- 🕸 quantum entanglement
- **?** queries

dynamic programming

Graphs, Groups, Topology, and Computational Complexity

Graph isomorphism

vertex set $V = \{1, ..., n\}$

edge set $E \subseteq \binom{V}{2}$

isomorphism bijection $f: V \to V'$ with $uv \in E \iff f(u)f(v) \in E'$

subgraph isomorphism injective function $g: V \to V'$ with $uv \in E \Rightarrow g(u)g(v) \in E'$

"Here are G, G'. Is there such g?"

• NP-hard

"Is there isomorphism f?"

- probably not NP-hard
- actually in $n^{\log^{O(1)} n}$ time

graph G' = (V', E')

Luks 1981: Isomorphism of Graphs of Bounded Valence can be Tested in Polynomial Time.

Arvind et al. 2015: Colored Hypergraph Isomorphism is Fixed Parameter Tractable.

Seress 2003: Permutation Group Algorithms

isomorphism

bijection $f: V \to V'$ with $uv \in E \iff f(u)f(v) \in E'$

"Is there isomorphism f?"

- probably not NP-hard
- actually in $n^{\log^{O(1)} n}$ time

graph G' = (V', E')

Graphs, Groups, Topology, and Computational Complexity

Evasiveness conjecture

vertex set $V = \{1, ..., n\}$ edge set $E \subseteq {V \choose 2}$ G_n = set of graphs on *n* vertices

graph	property	Φ
$\Phi:\mathcal{G}_n$ -	→ {0,1}	

invariant under isomorphisms: $\Phi(G) = \Phi(G')$ if G, G' isomorphic

 G_n = set of graphs on *n* vertices

graph property Φ $\Phi: \mathcal{G}_n \to \{0,1\}$

invariant under isomorphisms: $\Phi(G) = \Phi(G')$ if G, G' isomorphic

Query complexity of Φ :

How many edges do we need to uncover in the worst case to know $\Phi(G)$ certainly?

Evasiveness Conjecture: For every monotone Φ , all edges need to be uncovered!

shown when n is a prime power

Kahn, Saks, Sturtevant 1984: A topological approach to evasiveness.

Miller 2013: Evasiveness of Graph Properties and Topological Fixed-Point Theorems

Löh 2022: Applied Algebraic Topology

Roth, Schmitt 2020: A topological approach to #W[1]-hardness.

C., Neuen (unpublished): Counting Small Induced Subgraphs: Hardness via Fourier Analysis G_n = set of graphs on *n* vertices

graph property Φ $\Phi: \mathcal{G}_n \to \{0,1\}$

invariant under isomorphisms: $\Phi(G) = \Phi(G')$ if G, G' isomorphic

Query complexity of Φ :

How many edges do we need to uncover in the worst case to know $\Phi(G)$ certainly?

Evasiveness Conjecture: For every monotone Φ , all edges need to be uncovered!

shown when *n* is a prime power

Administrative fine-print

Studienleistung (course work)

- 80 minutes talk
 + 10 minutes discussion
- handout (in English):
 - 1-2 pages
 - talk summary
 - exercises for participation
- discussion of preliminary version 2-3 weeks before talk

Prüfungsleistung (examination, graded)

- written report of the talk, due one week before the talk
- Proseminar / ungraded seminar: report not mandatory but highly recommended
- precise ECTS depends on Prüfungsordnung & Modulkatalog

- start early
- understand material
- consult additional sources, be critical and independent

-

raw concept

- collect important points
- find main goal of presentation, determine priorities
- devise rough structure

- be precise and concise
- order material
- ideas > technical details
- include questions
- end with summary, example, open problem
- practice timing
- seminar context

detailed concept

report

- memorize first sentences
- be independent of notes, keep eye contact
- meta-information
- definitions on board, handout
- no rush, write clearly, use colors
- no need to impress anyone
- Can you follow your own talk?

• more detailed than talk

- your account of material, cite properly, no plagiarism
- statements require proofs