Aufgabe 1 (lineare Gleichungssysteme). Sei K ein Körper, seien $n, m \in \mathbb{N}$ und seien $A \in M_{m \times n}(K)$ sowie $b \in K^m$. Sei $(A \mid b)$ die Matrix, die entsteht, wenn wir rechts an A noch die Spalte b hinzufügen. Welche der folgenden Aussagen sind in dieser Situation immer wahr? Begründen Sie Ihre Antwort (durch einen Beweis oder ein geeignetes Gegenbeispiel)!

- 1. Ist $V(A, b) \neq \emptyset$, so gilt $rg(A \mid b) = rg A$.
- 2. Ist $\operatorname{rg}(A \mid b) = \operatorname{rg} A$, so gilt $V(A, b) \neq \emptyset$.

Aufgabe 2 (diskrete Heisenberggruppe). Sei

$$H := \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \middle| x, y, z \in \mathbb{Z} \right\} \subset M_{3 \times 3}(\mathbb{R}).$$

Zeigen Sie, dass H bezüglich Matrixmultiplikation eine Gruppe bildet (die sogenannte diskrete Heisenberggruppe).

Aufgabe 3 (Basiswechsel und Konjugation). Sei K ein Körper, sei $f\colon V\longrightarrow V$ ein Endomorphismus eines endlich-dimensionalen K-Vektorraums V und sei B eine Basis von V. Sei $n:=\dim_K V$ und $A\in \mathrm{GL}_n(K)$. Zeigen Sie, dass die folgenden Aussagen äquivalent sind:

- 1. Es gibt eine Basis C von V mit $M_{C,C}(f) = A$.
- 2. Es gibt eine Matrix $S \in GL_n(K)$ mit

$$A = S^{-1} \cdot M_{B,B}(f) \cdot S.$$

Aufgabe 4 (Blorx-O-Color). Commander Blorx sieht Farben im Blorx-O-Color-Farbmodell, das aus einer additiven Mischung der drei Grundfarben urx $(u: \square)$, platsch $(p: \square)$ und oink $(o: \square)$ besteht. In RGB (Beispiel 3.2.8) lassen sich diese Farben wie folgt spezifizieren:

$$u = \begin{pmatrix} 1.00 \\ 0.72 \\ 0.06 \end{pmatrix}, \quad p = \begin{pmatrix} 0.12 \\ 0.69 \\ 0.67 \end{pmatrix}, \quad o = \begin{pmatrix} 1.00 \\ 0.75 \\ 0.80 \end{pmatrix}.$$

Genauer gesagt sieht Blorx nur Farben im RGB-Würfel, die durch positive Beiträge der Grundfarben urx, platsch und o
ink gemischt werden. Kann Blorx die RGB-Farbe

$$\blacksquare = \begin{pmatrix} 0.26 \\ 0.49 \\ 0.27 \end{pmatrix}$$

sehen? Gehen Sie wie folgt vor:

- 1. Formulieren Sie dieses Frage geeignet als ein Problem in Linearer Algebra.
- 2. Lösen Sie dieses Problem in Linearer Algebra.

Bonusaufgabe (invertierbare Matrizen über \mathbb{F}_2). Sei $n \in \mathbb{N}$. Bestimmen Sie die Anzahl der Elemente von $\mathrm{GL}_n(\mathbb{F}_2)$.

Hinweis. Wieviele Basen gibt es in \mathbb{F}_2^n ?