Aufgabe 1 (Vererbung von Erzeugendensystemen und linearer Unabhängigkeit). Sei K ein Körper, sei V ein K-Vektorraum. Welche der folgenden Aussagen sind in dieser Situation immer wahr? Begründen Sie Ihre Antwort (durch einen Beweis oder ein geeignetes Gegenbeispiel)!

- 1. Ist $E \subset V$ ein Erzeugendensystem von V, so ist jede Teilmenge von E auch ein Erzeugendensystem von V.
- 2. Ist $(v_i)_{i \in I}$ eine linear unabhängige Familie in V, so ist jede Teilfamilie von $(v_i)_{i \in I}$ auch linear unabhängig.

Aufgabe 2 (eine Basis von \mathbb{R}^2). Wir betrachten den Vektor

$$v_1 := \begin{pmatrix} 2016 \\ 2017 \end{pmatrix}$$

in \mathbb{R}^2 .

- 1. Geben Sie einen Vektor $v_2 \in \mathbb{R}^2$ an, so dass die Familie (v_1, v_2) eine Basis von \mathbb{R}^2 bildet (und begründen Sie, warum es sich dabei um eine Basis handelt).
- 2. Bestimmen Sie die Menge

$$\left\{ (\lambda_1, \lambda_2) \in \mathbb{R} \times \mathbb{R} \mid \lambda_1 \cdot v_1 + \lambda_2 \cdot v_2 = \begin{pmatrix} 2016 \\ 2018 \end{pmatrix} \right\}$$

(und begründen Sie Ihre Antwort).

Hinweis. Wenn Sie sich geschickt anstellen, werden Sie fast gar nichts rechnen müssen!

Aufgabe 3 (Irrationalität). Wir betrachten \mathbb{R} auf kanonische Weise als \mathbb{Q} -Vektorraum. Sei $\alpha \in \mathbb{R}$. Zeigen Sie, dass α genau dann irrational ist (d.h. $\alpha \in \mathbb{R} \setminus \mathbb{Q}$), wenn die Familie

$$\left(\frac{2016}{2017}, \alpha\right)$$

im \mathbb{Q} -Vektorraum \mathbb{R} linear unabhängig ist.

Aufgabe 4 (lineare Unabhängigkeit und Darstellbarkeit). Sei K ein Körper, sei V ein K-Vektorraum, sei $n \in \mathbb{N}$ und sei (v_1, \ldots, v_n) eine Familie in V. Zeigen Sie, dass dann die folgenden Aussagen äquivalent sind:

- 1. Die Familie (v_1, \ldots, v_n) ist linear unabhängig.
- 2. Die Abbildung

$$K^n \longrightarrow V$$

$$\begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} \longmapsto \sum_{j=1}^n \lambda_j \cdot v_j$$

ist injektiv.

Bitte wenden

Bonusaufgabe (Polynomfunktionen). Sei $\operatorname{Poly}(\mathbb{R}, \mathbb{R}) \subset \operatorname{Abb}(\mathbb{R}, \mathbb{R})$ die Menge aller Polynomfunktionen $\mathbb{R} \longrightarrow \mathbb{R}$; diese Menge ist ein \mathbb{R} -Untervektorraum von Abb (\mathbb{R}, \mathbb{R}) . Dabei ist eine Funktion $f: \mathbb{R} \longrightarrow \mathbb{R}$ eine Polynomfunktion, wenn es $n \in \mathbb{N}$ und $a_0, \ldots, a_n \in \mathbb{R}$ gibt mit

$$\forall_{x \in \mathbb{R}} \quad f(x) = \sum_{j=0}^{n} a_j \cdot x^j.$$

Zu $n \in \mathbb{N}$ betrachten wir die Polynomfunktion

$$f_n \colon \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longmapsto x^n$.

Zeigen Sie, dass $(f_n)_{n\in\mathbb{N}}$ eine Basis von $\operatorname{Poly}(\mathbb{R},\mathbb{R})$ ist.

Hinweis. Die lineare Unabhängigkeit lässt sich auf verschiedene Arten nachweisen; es kann an dieser Stelle nützlich sein, Methoden aus der Analysis zu verwenden.