Hinweis. Sie dürfen auf diesem Übungsblatt verwenden, dass

$$\mathbb{Z} \longrightarrow \pi_1(S^1, 1)$$

$$n \longmapsto \left[\mathbb{C} \supset S^1 \ni z \mapsto z^n \in S^1 \subset \mathbb{C} \right]$$

ein Gruppenisomorphismus ist.

Aufgabe 1 (eigentlich diskontinuierliche Operationen). Welche der folgenden Aussagen sind wahr? Begründen Sie jeweils kurz Ihre Antwort.

- 1. Alle freien Gruppe
noperationen der Gruppe $\mathbb Z$ in Top
sind eigentlich diskontinuierlich.
- 2. Die Decktransformationsgruppe einer Überlagerung operiert eigentlich diskontinuierlich auf dem Totalraum.

Aufgabe 2 (Brezelüberlagerungen). Sei $(B,b) := (S^1,1) \vee (S^1,1)$.

- 1. Skizzieren Sie zwei zusammenhängende zweiblättrige Überlagerungen des Raumes (B,b), die in $Cov_{(B,b)}$ nicht isomorph sind (und begründen Sie dies kurz).
- 2. Beschreiben Sie zu Ihren Beispielen aus dem ersten Teil jeweils die induzierten Abbildungen nach Anwenden von π_1 .
- 3. Skizzieren Sie eine zusammenhängende dreiblättrige Überlagerung des Raumes (B, b), bei der die Decktransformationsgruppe *nicht* transitiv auf den Fasern operiert (und begründen Sie dies kurz).
- 4. Skizzieren Sie eine zusammenhängende zweiblättrige Überlagerung der folgenden zweidimensionalen Mannigfaltigkeit:

Aufgabe 3 (Die Hopf-Faserung). Wir fassen S^1 als Teilmenge von \mathbb{C} auf und wir fassen $S^3 \subset \mathbb{R}^4$ via der kanonischen Identifikation $\mathbb{R}^4 = \mathbb{C}^2$ als Teilmenge von \mathbb{C}^2 auf. Dann ist

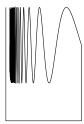
$$S^1 \times S^3 \longrightarrow S^3$$
$$(s, (z_1, z_2)) \longmapsto (s \cdot z_1, s \cdot z_2)$$

eine Operation der multiplikativen Gruppe S^1 auf S^3 in Top.

- 1. Zeigen Sie, dass $p\colon S^3\longrightarrow S^1\setminus S^3$ (die sogenannte Hopf-Faserung) ein lokal triviales Bündel mit Faser S^1 ist.
- 2. Zeigen Sie, dass der Quotient $S^1 \setminus S^3$ zu S^2 homöomorph ist.
- 3. Ist das Bündel $p\colon S^3 \longrightarrow S^1 \setminus S^3$ trivial? Begründen Sie Ihre Antwort.
- 4. Finden Sie in der Literatur eine graphische Darstellung der Hopf-Faserung und erklären Sie diese kurz.

Bitte wenden

Aufgabe 4 (Der Warschauer Kreis). Der topologische Raum



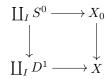
$$K := \left\{ (x, \sin(2 \cdot \pi/x)) \mid x \in (0, 1] \right\}$$

$$\cup \left(\{1\} \times [-2, 0] \right) \cup \left([0, 1] \times \{-2\} \right) \cup \left(\{0\} \times [-2, 1] \right)$$

(mit der Teilraumtopologie von \mathbb{R}^2) heißt Warschauer Kreis.

- 1. Zeigen Sie, dass die Fundamentalgruppe von K (bezüglich allen Basispunkten) trivial ist.
- 2. Zeigen Sie, dass K nicht-triviale Überlagerungen besitzt. Hinweis. Konstruieren Sie geeignete Überlagerungen aus Überlagerungen von S^1 .

Bonusaufgabe (Fundamentalgruppen eindimensionaler Komplexe). Ein eindimensionaler Komplex ist ein topologischer Raum X zusammen mit einem diskreten Teilraum X_0 mit folgender Eigenschaft: Es gibt eine Menge I und ein Pushout der Form



wobei die linke vertikale Abbildung die kanonische Inklusion ist und die rechte vertikale Abbildung die Inklusion von X_0 nach X ist. D.h. eindimensionale Komplexe erhält man, indem man Intervalle auf eine gewisse Weise an ihren Endpunkten verklebt.

- 1. Wie kann man Einpunktvereinigungen von Kreisen als eindimensionale Komplexe auffassen?
- 2. Zeigen Sie: Ist (X, X_0) ein (wegzusammenhängender) eindimensionaler Komplex, so ist die Fundamentalgruppe von X (bezüglich allen Basispunkten) eine freie Gruppe.