Exercise 1 (chain homotopy equivalences). Let R be a ring with unit, let $Z \in Ob(_R Mod)$, and let $C, D \in Ob(_{\mathbb{Z}} Ch)$. Prove or disprove:

- 1. If $f: C \longrightarrow D$ is a chain homotopy equivalence in $\mathbb{Z}Ch$, then the tensor product $Z \otimes_{\mathbb{Z}} f: Z \otimes_{\mathbb{Z}} C \longrightarrow Z \otimes_{\mathbb{Z}} D$ is a chain homotopy equivalence in ${}_{R}Ch$.
- 2. If $Z \otimes_{\mathbb{Z}} f : Z \otimes_{\mathbb{Z}} C \longrightarrow Z \otimes_{\mathbb{Z}} D$ is a chain homotopy equivalence in ${}_{R}Ch$, then $f : C \longrightarrow D$ is a chain homotopy equivalence in ${}_{\mathbb{Z}}Ch$.

Exercise 2 (the standard resolution/die Standard-Auflösung). Let G be a group. We consider the chain complex $C \in Ob(\mathbb{Z}Ch)$ with the chain modules given by

$$C_n := \begin{cases} \bigoplus_{g \in G^{n+1}} \mathbb{Z} \cdot g & \text{if } n \ge 0\\ 0 & \text{if } n < 0 \end{cases}$$

for all $n \in \mathbb{Z}$ and the boundary operator given by

$$\partial_n \colon C_n \longrightarrow C_{n-1}$$

 $G^{n+1} \ni g \longmapsto \sum_{j=0}^n (-1)^j \cdot (g_0, \dots, g_{j-1}, g_{j+1}, \dots, g_n)$

for all $n \in \mathbb{N}_{>0}$. Show that C is chain homotopy equivalent to the chain complex D concentrated in degree 0 with $D_0 \cong_{\mathbb{Z}} \mathbb{Z}$.

Exercise 3 (the ℓ^1 -semi-norm on singular homology). Let X be a topological space and let $k \in \mathbb{N}$. Let $|\cdot|_1$ be the ℓ^1 -norm on $C_k(X; \mathbb{R})$ with respect to the \mathbb{R} -basis of $C_k(X; \mathbb{R})$ that consists of all singular k-simplices of X. We then define $\|\cdot\|_1 \colon H_k(X; \mathbb{R}) \longrightarrow \mathbb{R}_{\geq 0}$ by

$$\|\alpha\|_1 := \inf\left\{ |c|_1 \mid c \in C_k(X; \mathbb{R}), \ \partial_k c = 0, \ [c] = \alpha \in H_k(X; \mathbb{R}) \right\}$$

for all $\alpha \in H_k(X; \mathbb{R})$.

- 1. Show that $\|\cdot\|_1$ is a semi-norm on $H_k(X; \mathbb{R})$.
- 2. Let $f: X \longrightarrow Y$ be a homotopy equivalence. Show that the induced homomorphism $H_k(f; \mathbb{R}): H_k(X; \mathbb{R}) \longrightarrow H_k(Y; \mathbb{R})$ is isometric with respect to $\|\cdot\|_1$.

Exercise 4 (singular homology of ascending unions). Let R be a ring with unit and let $Z \in Ob(_R Mod)$. Let X be a topological space and let $(X_n)_{n \in \mathbb{N}}$ be an ascending sequence of subspaces of X with $\bigcup_{n \in \mathbb{N}} X_n^\circ = X$. Use a compactness argument to prove the following: For all $k \in \mathbb{Z}$ the inclusion maps $(X_n \hookrightarrow X)_{n \in \mathbb{N}}$ induce an isomorphism

$$\operatorname{colim}_{n\in\mathbb{N}}H_k(X_n;Z)\longrightarrow H_k(X;Z)$$

of left *R*-modules. *Hints.* We write

$$\operatorname{colim}_{n\in\mathbb{N}}H_k(X_n;Z):=\left(\bigoplus_{n\in\mathbb{N}}H_k(X_n;Z)\right)\Big/{\sim},$$

where " \sim " is the equivalence relation that is generated by

$$\forall_{n\in\mathbb{N}} \quad \forall_{m\in\mathbb{N}} \quad \forall_{\alpha\in H_k(X_n;Z)} \quad \alpha \sim H_k(i_{n,m};Z)(\alpha) \in H_k(X_m;Z)$$

and where $i_{n,m} \colon X_n \longrightarrow X_m$ are the corresponding inclusions.

Bonus Problem (singular homology of weakly contractible spaces). A topological space X is *weakly contracible* (schwach kontraktibel) if there is an $x_0 \in X$ such that for all $n \in \mathbb{N}$ the set $\pi_n(X, x_0)$ has exactly one element.

1. Let X be weakly contractible. Show that the constant map $X \longrightarrow \bullet$ induces an isomorphism $H_*(X; \mathbb{Z}) \longrightarrow H_*(\bullet; \mathbb{Z})$.

Hints. Inductively, replace the singular chain complex C(X) by subcomplexes that are generated by singular simplices that are constant on low-dimensional faces.

2. What does this imply for the singular homology with Z-coefficients of the Warsaw circle?

