Algebraic Topology: Exercises

Prof. Dr. C. Löh/M. Uschold/J. Witzig

Exercise 1 (product topology). Let X and Y be topological spaces. Which of the following statements are true? Justify your answer with a suitable proof or counterexample.

- 1. If $B \subset X$ and $C \subset Y$ are closed subsets, then $B \times C \subset X \times Y$ is closed.
- 2. If $A \subset X \times Y$ is closed, then there are closed sets $B \subset X$ and $C \subset Y$ with $A = B \times C$.

Exercise 2 (TOPOLOGY). Classify the following six subspaces of \mathbb{R}^2 up to homeomorphism and prove this classification result.

Hints. Some of the homeomorphisms might be hard to write down explicitly; in these cases, it is sufficient to give an outline on how to construct them and to indicate clearly that a proper formal argument would require more details.

Exercise 3 (stereographic projection). Let $n \in \mathbb{N}_{>0}$ and $N := (0, \ldots, 0, 1) \in S^n$; i.e., N is the North Pole of S^n . The map

$$s_n \colon S^n \setminus \{N\} \longrightarrow \mathbb{R}^n$$
$$(x_1, \dots, x_{n+1}) \longmapsto \frac{1}{1 - x_{n+1}} \cdot (x_1, \dots, x_n)$$

is called *stereographic projection*. Give a geometric interpretation of this map and prove that it is a homeomorphism. Illustrate your arguments graphically!

Exercise 4 (balls, spheres, simplices). Let $n \in \mathbb{N}_{>0}$. Solve one of the following problems:

1. Prove that Δ^n is homeomorphic to D^n and that $\partial \Delta^n$ is homeomorphic to S^{n-1} .

Hints. Find the centre and inflate!

2. Prove that D^n/S^{n-1} is homeomorphic to S^n .

Hints. Quotient spaces will be introduced in the second lecture.

Illustrate your arguments graphically! *Hints.* The compact-Hausdorff trick might be useful.

Bonus problem (Peano curves). Show that there exist surjective continuous maps $[0,1] \rightarrow [0,1] \times [0,1]$. Can such a map be injective?

Submission before October 26, 2021, 8:30, via GRIPS

(Solutions may be submitted in English or German.)