Exercise 1 (small singular cycles). Let X be a topological space, let $k \in \mathbb{N}_{>0}$. Which of the following statements are in this situation always true? Justify your answer with a suitable proof or counterexample.

- 1. If $\sigma \in \text{map}(\Delta^k, X) \subset C_k(X)$ is a singular cycle of X, then k is odd.
- 2. If $\sigma, \tau \in \text{map}(\Delta^k, X)$ and $\sigma + \tau$ is a singular cycle of X, then k is odd.

Exercise 2 (algebraic Euler characteristic). Let R be a ring with unit that admits a nice notion rk_R of rank for finitely generated R-modules (e.g., fields, principal ideal rings, ...). A chain complex $C \in \operatorname{Ob}({}_R\mathsf{Ch})$ is *finite* if for every $k \in \mathbb{Z}$ the R-module C_k is finitely generated and $\{k \in \mathbb{Z} \mid C_k \not\cong_R 0\}$ is finite. The *Euler characteristic* of a finite chain complex $C \in \operatorname{Ob}({}_R\mathsf{Ch})$ is defined by

$$\chi(C) := \sum_{k \in \mathbb{Z}} (-1)^k \cdot \operatorname{rk}_R C_k.$$

Show that $\chi(C) = \sum_{k \in \mathbb{Z}} (-1)^k \cdot \operatorname{rk}_R(H_k(C))$ and explain which properties of rk_R you used in your arguments.

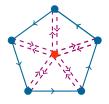
Exercise 3 (the ℓ^1 -semi-norm on singular homology). Let X be a topological space and let $k \in \mathbb{N}$. Let $|\cdot|_1$ be the ℓ^1 -norm on $C_k(X;\mathbb{R})$ with respect to the \mathbb{R} -basis of $C_k(X;\mathbb{R})$ that consists of all singular k-simplices of X. We then define the ℓ^1 -semi-norm $\|\cdot\|_1 \colon H_k(X;\mathbb{R}) \longrightarrow \mathbb{R}_{>0}$ by

$$\|\alpha\|_1 := \inf\{|c|_1 \mid c \in C_k(X; \mathbb{R}), \ \partial_k c = 0, \ [c] = \alpha \in H_k(X; \mathbb{R})\}$$

for all $\alpha \in H_k(X; \mathbb{R})$.

- 1. Show that $\|\cdot\|_1$ is a semi-norm on $H_k(X;\mathbb{R})$.
- 2. Let $f: X \longrightarrow Y$ be a continuous map. Show that $||H_k(f; \mathbb{R})(\alpha)||_1 \le ||\alpha||_1$ holds for all $\alpha \in H_k(X; \mathbb{R})$.

Exercise 4 (singular homology in degree 1). Let X be a path-connected, non-empty topological space. Let $\alpha \in H_1(X; \mathbb{Z})$. Show that there exists a continuous map $f: S^1 \longrightarrow X$ with $\alpha \in \operatorname{im} H_1(f; \mathbb{Z})$. Illustrate!



Bonus problem (realisation of homology groups). Let $k \in \mathbb{N}_{>0}$. Construct a functor

$$R_k \colon_{\mathbb{Z}}\mathsf{Mod}^\mathsf{fin} \longrightarrow \mathsf{Top_h}$$

with $h_k \circ R_k \cong \operatorname{Id}_{\mathbb{Z}\mathsf{Mod}^\mathsf{fin}}$ and $h_\ell \circ R_k \cong 0$ for all $\ell \in \mathbb{N}_{>0} \setminus \{k\}$. Here, $\mathbb{Z}\mathsf{Mod}^\mathsf{fin}$ denotes the category of all finitely generated \mathbb{Z} -modules. Hints. Use spheres and mapping cones!