Algebraic Topology: Exercises

Prof. Dr. C. Löh/M. Uschold/J. Witzig

Exercise 1 (chain homotopy equivalence). Let R be a principal ideal domain and let $C, D \in Ob(_RCh)$. Which of the following statements are true? Justify your answer with a suitable proof or counterexample.

- 1. If C is finite and $C \simeq_{_{B}\mathsf{Ch}} D$, then also D is finite.
- 2. If C and D are finite with $C \simeq_{R} Ch D$, then $\chi(C) = \chi(D)$.

Hints. Finite chain complexes and the algebraic Euler characteristic were introduced in Exercise 2 on Sheet 12.

Exercise 2 (diameter of affine simplices). Let $k \in \mathbb{N}$ and let $\sigma: \Delta^k \longrightarrow \mathbb{R}^\infty$ be an affine linear simplex. Show that every summand τ in the definition of the barycentric subdivision $B_k(\sigma)$ satisfies

diam
$$(\tau(\Delta^k)) \le \frac{k}{k+1} \cdot \operatorname{diam}(\sigma(\Delta^k)).$$

Hints. For $A \subset \mathbb{R}^{\infty}$, we write diam $A := \sup_{x,y \in A} ||x - y||_2$. How can the diameter of affine linear simplices be expressed in terms of the vertices?

Exercise 3 (concrete cycles). Give an example of a singular cycle in $C_2(S^2; \mathbb{Z})$ that represents a non-trivial class in $H_2(S^2; \mathbb{Z})$ and prove that this cycle indeed has this property. Illustrate!

Exercise 4 (compatible homotopies). Let X be a topological space, let $(S_k \subset \max(\Delta^k, X))_{k \in \mathbb{N}}$ be a family of simplices, and let $(h_{\sigma})_{k \in \mathbb{N}, \sigma \in \max(\Delta^k, X)}$ be a family of homotopies with the following properties:

- 1. For each $k \in \mathbb{N}$ and each $\sigma \in \operatorname{map}(\Delta^k, X)$, the map $h_{\sigma} \colon \Delta^k \times [0, 1] \longrightarrow X$ is a homotopy from σ to an element of S_k .
- 2. For all $k \in \mathbb{N}$, all $\sigma \in \operatorname{map}(\Delta^k, X)$, and all $j \in \{0, \ldots, k\}$, we have

$$h_{\sigma \circ i_{k,j}} = h_{\sigma} \circ (i_{k,j} \times \mathrm{id}_{[0,1]}).$$

3. For all $k \in \mathbb{N}$ and all $\sigma \in S_k$, the homotopy h_{σ} satisfies

$$\forall_{x \in \Delta^k} \quad \forall_{t \in [0,1]} \quad h_\sigma(x,t) = \sigma(x).$$

Let $C^{S}(X) \subset C(X)$ be the subcomplex of the singular chain complex generated in each degree $k \in \mathbb{N}$ by S_k instead of map (Δ^k, X) .

Show that the inclusion $C^{S}(X) \longrightarrow C(X)$ is a chain homotopy equivalence in $\mathbb{Z}Ch$ (and thus induces an isomorphism in homology).

Bonus problem (barycentric subdivision). Write a LAT_EX-macro that draws the barycentric subdivision of affine 2-simplices (specified by their vertices):

Submission before February 1, 2022, 8:30, via GRIPS