Exercise 1 (point-removal trick for homotopy equivalence?). Let X and Y be topological spaces and let $x \in X$, $y \in Y$. Which of the following statements are true? Justify your answer with a suitable proof or counterexample.

- 1. If $X \simeq Y$, then $X \setminus \{x\} \simeq Y \setminus \{y\}$.
- 2. If $X \setminus \{x\} \simeq Y \setminus \{y\}$, then $X \simeq Y$.

Exercise 2 (homotopy equivalence and path-connectedness).

- 1. Show that a space X is path-connected if and only if all continuous maps $[0,1] \longrightarrow X$ are homotopic to each other.
- 2. Conclude that path-connectedness is preserved under homotopy equivalences.

Exercise 3 (OOOOO). We consider the following three subspaces of \mathbb{R}^2 . State and prove the classification of these spaces up to homotopy equivalence.

Exercise 4 (mapping cones/Abbildungskegel). Let X and Y be topological spaces and let $f \in \text{map}(X,Y)$. The mapping cone of f is defined by the pushout

$$X \xrightarrow{f} Y$$

$$\downarrow \downarrow \qquad \qquad \downarrow$$

$$\operatorname{Cone}(X) \longrightarrow \operatorname{Cone}(f)$$

where $\operatorname{Cone}(X) := (X \times [0,1])/(X \times \{0\})$ denotes the *cone over* X and $i : X \longrightarrow \operatorname{Cone}(X), \ x \longmapsto [x,1]$ is the canonical map to the base of the cone. Prove the following statements (and illustrate your arguments graphically):

- 1. The cone Cone(X) is contractible if X is non-empty.
- 2. If $f: X \longrightarrow Y$ is a homotopy equivalence, then the mapping cone $\operatorname{Cone}(f)$ is contractible.

Bonus problem (four-point-circle). Let $X := \{1, 2, 3, 4\}$. We equip X with the topology generated by $\{\{1\}, \{3\}, \{1, 2, 3\}, \{1, 3, 4\}\}$. In this exercise, you may use that S^1 is *not* contractible (which we will prove later in this course).

- 1. Show that there exists a surjective continuous map $S^1 \longrightarrow X$.
- 2. Show that S^1 and X are not homotopy equivalent.
- 3. Bonus bonus problem. Show that X is not contractible.