Algebraic Topology: Études

Prof. Dr. C. Löh/M. Uschold/J. Witzig

Exercise 1 (coverings of the circle). Find three pairwise non-isomorphic 3-sheeted coverings of S^1 and illustrate these coverings in a suitable way!

Exercise 2 (covering maps?). Illustrate the following maps in a suitable way! Which of them are covering maps and how many sheets do they have?

1. $\mathbb{R} \longrightarrow \mathbb{R}_{\geq 0}$, $x \longmapsto x^2$ 2. $\mathbb{R} \setminus \{0\} \longrightarrow \mathbb{R}_{>0}$, $x \longmapsto x^2$ 3. $\mathbb{C} \setminus \{0\} \longrightarrow \mathbb{C} \setminus \{0\}$, $z \longmapsto z^{2021}$ 4. $S^1 \times \mathbb{R} \longrightarrow S^1 \times S^1$, $([x], y) \longmapsto ([x], [y])$

Exercise 3 (covering maps from group actions?). Which of the following group actions are properly discontinuous? Determine the corresponding quotient spaces!

- 1. the action of $\operatorname{GL}_2(\mathbb{R})$ on \mathbb{R}^2 by matrix multiplication
- 2. the action of $SL_2(\mathbb{Z})$ on the upper half-plane by Möbius transformations
- 3. the action of $\mathbb{Z}/2021$ on S^1 , where $[1] \in \mathbb{Z}/2021$ acts via

$$S^1 \longrightarrow S^1$$
$$[x] \longmapsto [x+1/2021 \mod 1]$$

4. the action of $\mathbb{Z}/2$ on $S^1 \times S^1$, where $[1] \in \mathbb{Z}/2$ acts via

$$S^1 \times S^1 \longrightarrow S^1 \times S^1$$
$$([x], [y]) \longmapsto ([y], [x])$$

5. the action of $\mathbb{Z}/2$ on $S^1 \times S^1$, where $[1] \in \mathbb{Z}/2$ acts via

$$\begin{split} S^1 \times S^1 & \longrightarrow S^1 \times S^1 \\ ([x], [y]) & \longmapsto ([x+1/2 \mod 1], [y]) \end{split}$$

6. the action of $\mathbb{Z}/2$ on $S^1 \times S^1$, where $[1] \in \mathbb{Z}/2$ acts via

$$S^1 \times S^1 \longrightarrow S^1 \times S^1$$
$$([x], [y]) \longmapsto ([1 - x \mod 1], [y])$$

Exercise 4 (summary). Write a summary of Chapter 2.2 (Divide and Conquer), keeping the following questions in mind:

- 1. Which types of constructions of spaces are compatible with π_1 ?
- 2. Which of the results carry over easily to higher homotopy groups?
- 3. What are the main ideas of the corresponding proofs?
- 4. What are the main examples?
- 5. What are the limits of computability of fundamental groups?

No submission!