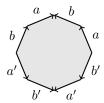
Aufgabe 1 (kleine CW-Komplexe). Sei X ein CW-Komplex mit genau einer 0-Zelle und genau einer 2-Zelle. Welche der folgenden Aussagen sind wahr? Begründen Sie jeweils kurz Ihre Antwort (mit einem Beweis oder Gegenbeispiel).

- 1. Hat X genau eine 1-Zelle, so ist $H_1(X; \mathbb{Z}) \ncong 0$.
- 2. Hat X genau zwei 1-Zellen, so ist $H_1(X; \mathbb{Z}) \ncong 0$.

 $\bf Aufgabe~2$ (verklebtes Achteck). Sei B der topologische Raum, den man durch die Verklebung



eines regulären Achtecks erhält.

- 1. Skizzieren Sie B geeignet ("nach" der Verklebung).
- 2. Geben sie eine CW-Struktur auf B mit minimaler Zellenanzahl an und begründen Sie, warum die Zellenanzahl unter allen CW-Strukturen auf B minimal ist.

Aufgabe 3 ($\mathbb{R}P^{\infty}$ und $\mathbb{C}P^{\infty}$). Sei

$$\mathbb{R}P^{\infty} := \bigcup_{n \in \mathbb{N}} \mathbb{R}P^{n}$$
$$\mathbb{C}P^{\infty} := \bigcup_{n \in \mathbb{N}} \mathbb{C}P^{n}$$

(jeweils versehen mit der Kolimestopologie der Systeme $\mathbb{R}P^0 \subset \mathbb{R}P^1 \subset \cdots$ bzw. $\mathbb{C}P^0 \subset \mathbb{C}P^1 \subset \cdots$).

- 1. Sei R ein Ring mit Eins. Bestimmen Sie $H_*(\mathbb{R}P^\infty; R)$ und $H_*(\mathbb{C}P^\infty; R)$.
- 2. Gibt es endlich-dimensionale CW-Komplexe, die zu $\mathbb{R}P^{\infty}$ oder $\mathbb{C}P^{\infty}$ homotopieäquivalent sind? Begründen Sie Ihre Antwort!

Aufgabe 4 (Homologie von CW-Strukturen, größere Schritte). Sei R ein Ring mit Eins, sei $((h_k)_{k\in\mathbb{Z}}, (\partial_k)_{k\in\mathbb{Z}})$ eine gewöhnliche Homologietheorie auf Top² mit Werten in $_R$ Mod und sei (X,A) ein endlicher relativer CW-Komplex mit relativer CW-Struktur $(X_n)_{n\in\mathbb{N}\cup\{-1\}}$.

1. Zeigen Sie: Für alle $n \in \mathbb{N}$ und alle $k \in \mathbb{Z} \setminus \{0, \dots, n\}$ ist

$$h_k(X_n, A) \cong 0.$$

2. Zeigen Sie: Für alle $n \in \mathbb{N} \cup \{-1\}$, alle $N \in \mathbb{N}_{\geq n}$ und alle $k \in \mathbb{Z}_{\leq n}$ ist

$$h_k(X_N, X_n) \cong 0.$$

3. Gelten die obigen Aussagen auch dann, wenn die betrachtete Homologietheorie *nicht* gewöhnlich ist? Begründen Sie Ihre Antwort (mit einem Beweis oder Gegenbeispiel).

Bonusaufgabe (klassifizierende Räume und Torsion). Sei

$$S^{\infty} := \bigcup_{n \in \mathbb{N}} S^{2 \cdot n + 1} = \bigcup_{n \in \mathbb{N}} S^n$$

(versehen mit der Kolimestopologie des Systems $S^1 \subset S^3 \subset \cdots$). Ist $d \in \mathbb{N}_{>0}$, so fassen wir \mathbb{Z}/d als Untergruppe von $S^1 \subset \mathbb{C}^{\times}$ auf (über die d-ten Einheitswurzeln) und betrachten die Operation von \mathbb{Z}/d auf S^{∞} , die von der Skalarmultiplikation von \mathbb{C} auf den ungeradedimensionalen (reellen) Sphären induziert wird. Sei X(d) der Quotient von S^{∞} nach dieser Gruppenoperation (mit der Quotiententopologie).

- 1. Falls Sie nicht an Algebraische Topologie I teilgenommen haben: Zeigen Sie, dass S^{∞} kontraktibel ist und dass die obige \mathbb{Z}/d -Operation auf S^{∞} stetig und frei ist.
- 2. Bestimmen Sie $H_*(X(d); \mathbb{Z})$ für alle $d \in \mathbb{N}_{>0}$, indem Sie eine geeignete CW-Struktur auf X(d) konstruieren.
- 3. Falls Sie an Algebraische Topologie I teilgenommen haben: Sei G eine Gruppe, die *nicht* torsionsfrei ist. Zeigen Sie, dass es *keinen* endlichdimensionalen Eilenberg-MacLane-Raum vom Typ K(G,1) gibt.

Hinweis. Betrachten Sie die Überlagerung zu einer nicht-trivialen endlichen zyklischen Untergruppe von $G \dots$